Bij longfibrose (fibroproliferatieve interstitiële longziekte) treedt verbindweefseling op in het longweefsel rondom de longblaasjes (alveoli). Dit leidt tot het stijver worden van het longweefsel met afname van het longvolume en tot een verminderde gaswisseling van zuurstof en koolzuurgas in het longparenchym. De hoofdklachten zijn benauwdheid, kortademigheid (vooral bij inspanning), droge hoest en gebrek aan energie en uithoudingsvermogen. Eenmaal beschadigd longweefsel kan zich niet meer herstellen.
Beste bezoeker, u heeft geen toegang.
Enkel (web)abonnees hebben toegang tot tijdschriftartikelen. Het webabonnement is nog in de maak.
U kunt zich wel alvast (gratis) registreren en tal van andere webartikelen raadplegen!
Auteur
Verschenen in
Referenties
Rogers IM. The cause of idiopathic pulmonary fibrosis: a hypothesis. J Immuno Biol. 2017;2:3.
Borthwick LA, et al. Cytokine mediated tissue fibrosis. Biochim Biophys Acta. 2013;1832(7):1049-60.
Huang E, et al. The roles of immune cells in the pathogenesis of fibrosis. Int J Mol Sci. 2020;21:5203.
Winterbottom CJ, et al. Exposure to ambient particulate matter is associated with accelerated functional decline in idiopathic pulmonary fibrosis. Chest. 2018;153(5):1221-1228.
Taskar VS, et al. Is idiopathic pulmonary fibrosis an environmental disease? Proc Am Thorac Soc. 2006;3(4):293-8.
Naik PK, et al. Viral infection and aging as cofactors for the development of pulmonary fibrosis. Expert Rev Respir Med. 2010;4(6):759-771.
Wat is longfibrose? www.longfibrose.nl/patient-naasten/wat-is-longfibrose
Spagnolo P, et al. Pulmonary fibrosis secondary to COVID-19: A call to arms? Lancet Respir Med. 2020;8(8):750-752.
Ojo As, et al. Pulmonary fibrosis in COVID-19 survivors: predictive factors and risk reduction strategies. Pulm Med. 2020;2020:6175964.
Bradding P, et al. The controversial role of mast cells in fibrosis. Immunol Rev. 2018;282(1):198-231.
Ng B, et al. Fibroblast-specific IL11 signaling drives chronic inflammation in murine fibrotic lung disease. FASEB J. 2020 Jul 12.
Cook SA, et al. Hiding in plain sight: interleukin-11 emerges as a master regulator of fibrosis, tissue integrity, and stromal inflammation. Annu Rev Med. 2020;71:263-276.
Schafer MJ, et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun. 2017;8:14532.
Schuliga M, et al. Mitochondrial dysfunction contributes to the senescent phenotype of IPF lung fibroblasts. J Cell Mol Med. 2018;22(12):5847-5861.
Park YH, et al. Insulin resistance mediates high-fat diet-induced pulmonary fibrosis and airway hyperresponsiveness through the TGF-β1 pathway. Exp Mol Med. 2019;51(5):1-12.
Kaur A, et al. An appraisal on the value of using nutraceutical based senolytics and senostatics in aging. Front Cell Dev Biol. 2020;8:218.
Wang Y, et al. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging 2016;8(11):2915-26.
Gurău F, et al. Anti-senescence compounds: A potential nutraceutical approach to healthy aging. Ageing Res Rev. 2018;46:14-31.
Malavolta M, et al. Pleiotropic effects of tocotrienols and quercetin on cellular senescence: introducing the perspective of senolytic effects of phytochemicals. Curr Drug Targets. 2016;17(4):447-59.
Justice JN, et al. Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine. 2019;40:554-563.
Peng H. Role of quercetin on inhibiting TGF-beta1 and TNF-alpha in lung of rats with silicosis. Proceedings of the International Conference on Material and Environmental Engineering (ICMAEE 2014).
Wei QF, et al. Therapeutic effects of quercetin on bleomycin induced pulmonary fibrosis in rats. Int J Clin Exp Med 2016;9(2):5161-5167.
Veith C, et al. The disturbed redox-balance in pulmonary fibrosis is modulated by the plant flavonoid quercetin. Toxicol Appl Pharmacol. 2017;336:40-48.
Akgedik R, et al. Effect of resveratrol on treatment of bleomycin-induced pulmonary fibrosis in rats. Inflammation. 2012;35(5):1732-41.
Liu R, et al. Therapeutic effects of alpha-lipoic acid on bleomycin-induced pulmonary fibrosis in rats. Int J Mol Med. 2007;19(6):865-73.
Tabata C, et al. All-trans-retinoic acid prevents radiation- or bleomycin-induced pulmonary fibrosis. Am J Respir Crit Care Med. 2006;174:1352-1360.
Dong Z, et al. The role of all-trans retinoic acid in bleomycin-induced pulmonary fibrosis in mice. Exp Lung Res. 2012;38:82–89.
Kennedy JI, et al.Dietary fish oil inhibits bleomycin-induced pulmonary fibrosis in the rat. Exp Lung Res. 1989;15:315-329.
Chen J, et al. Docosahexaenoic acid (DHA) ameliorates paraquat-induced pulmonary fibrosis in rats possibly through up-regulation of Smad 7 and SnoN. Food Chem Toxicol. 2013;57:330-337.
Zheng S, et al. ResolvinD1 stimulates epithelial wound repair and inhibits TGF-β-induced EMT whilst reducing fibroproliferation and collagen production. Lab Invest. 2018;98(1):130-140.
Torrinhas RS, et al. Parenteral fish oil: an adjuvant pharmacotherapy for coronavirus disease 2019? Nutrition. 2020;81:110900.
Chen J, et al. Protective roles of polysaccharides from Ganoderma lucidum on bleomycin-induced pulmonary fibrosis in rats. Int J Biol Macromol. 2016;92:278-281.
Wang QJ, et al. Effects of taurine on bleomycin-induced lung fibrosis in hamsters. Proc Soc Exp Biol Med. 1989;190:330-338.
Wang QJ, et al. Niacin attenuates bleomycin-induced lung fibrosis in the hamster. J Biochem Toxicol. 1990;5:13-22.
Gurujeyalakshmi G, et al. Regulation of transforming growth factor-beta1 mRNA expression by taurine and niacin in the bleomycin hamster model of lung fibrosis. Am J Respir Cell Mol Biol. 1998;18:334-342.
Gurujeyalakshmi G, et al. Taurine and niacin block lung injury and fibrosis by down-regulating bleomycin-induced activation of transcription nuclear factor-kappaB in mice. J Pharmacol Exp Ther. 2000;293(1):82-90.
Rodrigues da Silva M, et al. Beneficial efects of ascorbic acid to treat lung fibrosis induced by paraquat. PLoS ONE 2018;13: e0205535.
Shi Y, et al. Chronic vitamin D deficiency induces lung fibrosis through activation of the renin-angiotensin system. Sci Rep. 2017;7(1):3312.
Ma D, et al. Vitamin D and pulmonary fibrosis: a review of molecular mechanisms. Int J Clin Exp Pathol. 2019;12(9):3171-3178.
Tzilas V, et al. Vitamin D prevents experimental lung fibrosis and predicts survival in patients with idiopathic pulmonary fibrosis. Pulm Pharmacol Ther. 2019;55:17-24.
Gao Y, et al. Vitamin D levels are prognostic factors for connective tissue disease associated interstitial lung disease (CTD-ILD). Aging (Albany NY) 2020;12:4371-4378.
Zhang Z, et al. Preventive effects of vitamin D treatment on bleomycin-induced pulmonary fibrosis. Sci. Rep. 2015;5:17638.
Schapochnik A, et al. Vitamin D treatment abrogates the inflammatory response in paraquat-induced lung fibrosis. Toxicol Appl Pharmacol. 2018;355:60-67.
Radujkovic A, et al. Vitamin D deficiency and outcome of COVID-19 patients. Nutrients. 2020;12(9):2757.
Grant WB, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020;12:988.
Leask A. COVID-19: is fibrosis the killer? J Cell Commun Signal. 2020;14(2):255.
Wigén J, et al. Converging pathways in pulmonary fibrosis and Covid-19 - the fibrotic link to disease severity. Respir Med X. 2020;2:100023.
Ebadi M, et al. Perspective: improving vitamin D status in the management of COVID-19. Eur J Clin Nutr. 2020;74(6):856-859.
Silvestri M, et al. Melatonin: its possible role in the management of viral infections-a brief review. Ital J Pediatr. 2013;39:61.
Shneider A, et al. Can melatonin reduce the severity of COVID-19 pandemic? Int Rev Immunol. 2020;39(4):153-162.
Pedreira PR, et al. Effects of melatonin in an experimental model of ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2008;295(5):L820-7.
Martín Giménez VM, et al. Lungs as target of COVID-19 infection: protective common molecular mechanisms of vitamin D and melatonin as a new potential synergistic treatment. Life Sci. 2020;254:117808.
Hosseinzadeh A, et al. Idiopathic pulmonary fibrosis (IPF) signaling pathways and protective roles of melatonin. Life Sci. 2018;201:17-29.
Yu N, et al. Melatonin attenuates TGFβ1-induced epithelial-mesenchymal transition in lung alveolar epithelial cells. Mol Med Rep. 2016;14(6):5567-5572.
Aliasgharzadeh A, et al. Melatonin attenuates upregulation of Duox1 and Duox2 and protects against lung injury following chest irradiation in rats. Cell J. 2019;21(3):236-242.
Shin NR, et al. Melatonin suppresses fibrotic responses induced by cigarette smoke via downregulation of TGF-β1. Oncotarget. 2017;8(56):95692-95703.
Feng F, et al. Efficacy and safety of N-acetylcysteine therapy for idiopathic pulmonary fibrosis: An updated systematic review and meta-analysis. Exp Ther Med. 2019;18(1):802-816.
Liu Y, et al. Protective effects of berberine on radiation-induced lung injury via intercellular adhesion molecular-1 and transforming growth factor-beta-1 in patients with lung cancer. Eur J Cancer. 2008;44:2425-32.
Chitra P, et al. Berberine inhibits Smad and non-Smad signaling cascades and enhances autophagy against pulmonary fibrosis. J Mol Med (Berl). 2015;93(9):1015-31.
Tew XN, et al. Immunological axis of berberine in managing inflammation underlying chronic respiratory inflammatory diseases. Chem Biol Interact. 2020;317:108947.
Chapman HA, et al. Reversal of TGFβ1-driven profibrotic state in patients with pulmonary fibrosis. N Engl J Med. 2020;382(11):1068-70.
Zhang Y, et al. Radix Astragali and radix Angelicae sinensis in the treatment of idiopathic pulmonary fibrosis: a systematic review and meta-analysis. Front Pharmacol. 2020;11:415.