Gif is nu overal. Agentschappen maken zich sterk dat industriële chemicaliën in lage concentraties voorkomen en dat ze dus geen effect hebben op de gezondheid. Ondertussen wordt steeds duidelijker dat 'lage dosis' geen synoniem is voor 'onschadelijk voor de gezondheid'. Kennis van chemicaliën kan helpen om blootstelling te minimaliseren. De weinige gecontroleerde studies waarin dat getracht werd, illustreren dat inspanningen kunnen lonen.
Beste bezoeker, u heeft geen toegang.
Enkel (web)abonnees hebben toegang tot tijdschriftartikelen. Het webabonnement is nog in de maak.
U kunt zich wel alvast (gratis) registreren en tal van andere webartikelen raadplegen!
Auteur
Verschenen in
Referenties
Wang A, Padula A, Sirota M, Woodruff TJ. Environmental influences on reproductive health: the importance of chemical exposures. Fertil Steril. 2016; 106(4):905-929
Testai E, Galli CL, Dekant W et al. A plea for risk assessment of endocrine disrupting chemicals. Toxicology. 2013; 314(1):51-9 doi:10.1016/j.tox.2013.07.018
Busch W, Schmidt S, Kühne R et al. Micropollutants in European rivers: A mode of action survey to support the development of effect-based tools for water monitoring. Environ Toxicol Chem. 2016; 35(8):1887-99 doi:10.1002/etc.3460
Miller MF, Goodson WH, Manjili MH et al. Low-Dose Mixture Hypothesis of Carcinogenesis Workshop: Scientific Underpinnings and Research Recommendations. Environ Health Perspect. 2017; 125(2):163-169 doi:10.1289/EHP411
Hernández AF, Tsatsakis AM. Human exposure to chemical mixtures: Challenges for the integration of toxicology with epidemiology data in risk assessment. Food Chem Toxicol. 2017 May;103:188-193. doi: 10.1016/j.fct.2017.03.012
Hadrup N, Svingen T, Mandrup K et al. Juvenile Male Rats Exposed to a Low-Dose Mixture of Twenty-Seven Environmental Chemicals Display Adverse Health Effects. PLoS One. 2016 Sep 6;11(9):e0162027. doi: 10.1371/journal.pone.0162027. eCollection 2016.
Docea AO, Gofita E, Goumenou M et al. Six months exposure to a real life mixture of 13 chemicals' below individual NOAELs induced non monotonic sex-dependent biochemical and redox status changes in rats. Food Chem Toxicol. 2018 May;115:470-481. doi: 10.1016/j.fct.2018.03.052
Docea AO, Goumenou M, Calina D et al. Adverse and hormetic effects in rats exposed for 12 months to low dose mixture of 13 chemicals: RLRS part III. Toxicol Lett. 2019 Aug;310:70-91. doi: 10.1016/j.toxlet.2019.04.005
Fountoucidou P, Veskoukis AS, Kerasioti E et al. A mixture of routinely encountered xenobiotics induces both redox adaptations and perturbations in blood and tissues of rats after a long-term low-dose exposure regimen: The time and dose issue. Toxicol Lett. 2019 Dec 15;317:24-44. doi: 10.1016/j.toxlet.2019.09.015
Kim SA, Lee YM, Choi JY et al. Evolutionarily adapted hormesis-inducing stressors can be a practical solution to mitigate harmful effects of chronic exposure to low dose chemical mixtures. Environ Pollut. 2018 Feb;233:725-734. doi: 10.1016/j.envpol.2017.10.124.
Mosquera Ortega ME, Romero DM, Pato AM et al. Relationship between exposure, body burden and target tissue concentration after oral administration of a low-dose mixture of pyrethroid insecticides in young adult rats. Toxicology. 2018; 409:53-62 doi:10.1016/j.tox.2018.07.006
Lahouel A, Kebieche M, Lakroun Z et al. Neurobehavioral deficits and brain oxidative stress induced by chronic low dose exposure of persistent organic pollutants mixture in adult female rat. Environ Sci Pollut Res Int. 2016; 23(19):19030-40 doi:10.1007/s11356-016-6913-9
Hu J, Raikhel V, Gopalakrishnan K et al. Effect of postnatal low-dose exposure to environmental chemicals on the gut microbiome in a rodent model. Microbiome. 2016 Jun 14;4(1):26. doi: 10.1186/s40168-016-0173-2.
Carmody RN, Turnbaugh PJ. Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. J Clin Invest. 2014 Oct;124(10):4173-81. doi: 10.1172/JCI72335
Clarke G, Sandhu KV, Griffin BT et al. Gut Reactions: Breaking Down Xenobiotic-Microbiome Interactions. Pharmacol Rev. 2019; 71(2):198-224 doi:10.1124/pr.118.015768
Tsiaoussis J, Antoniou MN, Koliarakis I et al. Effects of single and combined toxic exposures on the gut microbiome: Current knowledge and future directions. Toxicol Lett. 2019 Sep 15;312:72-97. doi: 10.1016/j.toxlet.2019.04.014
Jiménez-Chillarón JC, Nijland MJ, Ascensão AA et al. Back to the future: transgenerational transmission of xenobiotic-induced epigenetic remodeling. Epigenetics. 2015; 10(4):259-73 doi:10.1080/15592294.2015.1020267
Landrigan PJ, Fuller R. Pollution, health and development: the need for a new paradigm. Rev Environ Health. 2016; 31(1):121-4 doi:10.1515/reveh-2015-0070
Daiber A, Lelieveld J, Steven S et al. The "exposome" concept - how environmental risk factors influence cardiovascular health. Acta Biochim Pol. 2019; 66(3):269-283 doi:10.18388/abp.2019_2853
Lee DH, Jacobs DR. New approaches to cope with possible harms of low-dose environmental chemicals. J Epidemiol Community Health. 2019; 73(3):193-197 doi:10.1136/jech-2018-210920
Lee YM, Kim KS, Jacobs DR, Lee DH. Persistent organic pollutants in adipose tissue should be considered in obesity research. Obes Rev. 2017; 18(2):129-139 doi:10.1111/obr.12481
La Merrill M, Emond C, Kim MJ et al. Toxicological function of adipose tissue: focus on persistent organic pollutants. Environ Health Perspect. 2013; 121(2):162-9 doi:10.1289/ehp.1205485
Lee DH, Lee IK, Song K et al. A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999-2002. Diabetes Care. 2006; 29(7):1638-44 doi:10.2337/dc06-0543
Fleury S, Rivière G, Allès B et al. Exposure to contaminants and nutritional intakes in a French vegetarian population. Food Chem Toxicol. 2017 Nov;109(Pt 1):218-229. doi: 10.1016/j.fct.2017.07.048
Van Audenhaege M, Heraud F, Menard C et al. Impact of food consumption habits on the pesticide dietary intake: comparison between a French vegetarian and the general population. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2009; 26(10):1372-88 doi:10.1080/02652030903031171
Kahleova H, Tonstad S, Rosmus J et al. The effect of a vegetarian versus conventional hypocaloric diet on serum concentrations of persistent organic pollutants in patients with type 2 diabetes. Nutr Metab Cardiovasc Dis. 2016 May;26(5):430-8
Tordjman K, Grinshpan L, Novack L et al. Exposure to endocrine disrupting chemicals among residents of a rural vegetarian/vegan community. Environ Int. 2016 Dec;97:68-75. doi: 10.1016/j.envint.2016.10.018
Hurtado-Barroso S, Tresserra-Rimbau A, Vallverdú-Queralt A, Lamuela-Raventós RM. Organic food and the impact on human health. Crit Rev Food Sci Nutr. 2019; 59(4):704-714 doi:10.1080/10408398.2017.1394815
Barański M, Srednicka-Tober D, Volakakis N et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br J Nutr. 2014 Sep 14;112(5):794-811. doi: 10.1017/S0007114514001366
Hyland C, Bradman A, Gerona R et al. Organic diet intervention significantly reduces urinary pesticide levels in U.S. children and adults.Environ Res. 2019; 171:568-575
Muncke J, Backhaus T, Geueke B et al. Scientific Challenges in the Risk Assessment of Food Contact Materials. Environ Health Perspect. 2017; 125(9):095001 doi:10.1289/EHP644
Ding S, Zhang Z, Chen Y et al. Urinary levels of phthalate metabolites and their association with lifestyle behaviors in Chinese adolescents and young adults. Ecotoxicol Environ Saf. 2019 Nov 15;183:109541
Koppen G, Govarts E, Vanermen G et al. Mothers and children are related, even in exposure to chemicals present in common consumer products.
Environ Res. 2019 Aug;175:297-307. doi: 10.1016/j.envres.2019.05.023
Wang YX, Liu C, Chen YJ et al. Predictors and correlations of phthalate metabolite concentrations in urine and seminal plasma among reproductive-aged men. Environ Res. 2018 Feb;161:336-344. doi: 10.1016/j.envres.2017.11.027
Liao C, Liu W, Zhang J et al. Associations of urinary phthalate metabolites with residential characteristics, lifestyles, and dietary habits among young children in Shanghai, China. Sci Total Environ. 2018 Mar;616-617:1288-1297. doi: 10.1016/j.scitotenv.2017.10.189
Witorsch RJ, Thomas JA. Personal care products and endocrine disruption: A critical review of the literature. Crit Rev Toxicol. 2010; 40 Suppl 3:1-30 doi:10.3109/10408444.2010.515563
Wallner P, Kundi M, Hohenblum P et al. Phthalate Metabolites, Consumer Habits and Health Effects. Int J Environ Res Public Health. 2016; 13(7) doi:10.3390/ijerph13070717
Harley KG, Kogut K, Madrigal DS et al. Reducing Phthalate, Paraben, and Phenol Exposure from Personal Care Products in Adolescent Girls: Findings from the HERMOSA Intervention Study. Environ Health Perspect. 2016; 124(10):1600-1607 doi:10.1289/ehp.1510514
Dirtu AC, Geens T, Dirinck E et al. Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake. Environ Int. 2013; 59:344-53 doi:10.1016/j.envint.2013.06.023
Martina CA, Weiss B, Swan SH. Lifestyle behaviors associated with exposures to endocrine disruptors. Neurotoxicology. 2012; 33(6):1427-1433 doi:10.1016/j.neuro.2012.05.016
Wazir U, Mokbel K. Bisphenol A: A Concise Review of Literature and a Discussion of Health and Regulatory Implications. In Vivo. ; 33(5):1421-1423 doi:10.21873/invivo.11619
Peng CY, Tsai EM, Kao TH et al. Canned food intake and urinary bisphenol a concentrations: a randomized crossover intervention study. Environ Sci Pollut Res Int. 2019; 26(27):27999-28009 doi:10.1007/s11356-019-05534-y
Lorber M, Schecter A, Paepke O et al. Exposure assessment of adult intake of bisphenol A (BPA) with emphasis on canned food dietary exposures. Environ Int. 2015 Apr;77:55-62. doi: 10.1016/j.envint.2015.01.008
Bae S, Hong YC. Exposure to bisphenol A from drinking canned beverages increases blood pressure: randomized crossover trial.
Hypertension. 2015 Feb;65(2):313-9. doi: 10.1161/HYPERTENSIONAHA.114.04261.
Sathyanarayana S, Alcedo G, Saelens BE et al. Unexpected results in a randomized dietary trial to reduce phthalate and bisphenol A exposures. J Expo Sci Environ Epidemiol. 2013; 23(4):378-84 doi:10.1038/jes.2013.9
Rudel RA, Gray JM, Engel CL et al. Food packaging and bisphenol A and bis(2-ethyhexyl) phthalate exposure: findings from a dietary intervention. Environ Health Perspect. 2011 Jul;119(7):914-20. doi: 10.1289/ehp.1003170.
Janjua NR, Mortensen GK, Andersson AM et al. Systemic uptake of diethyl phthalate, dibutyl phthalate, and butyl paraben following whole-body topical application and reproductive and thyroid hormone levels in humans. Environ Sci Technol. 2007 Aug 1;41(15):5564-70.
Lee DH, Jacobs DR. New approaches to cope with possible harms of low-dose environmental chemicals. J Epidemiol Community Health. 2019; 73(3):193-197 doi:10.1136/jech-2018-210920
Kim SA, Lee YM, Choi JY et al. Evolutionarily adapted hormesis-inducing stressors can be a practical solution to mitigate harmful effects of chronic exposure to low dose chemical mixtures. Environ Pollut. 2018; 233:725-734 doi:10.1016/j.envpol.2017.10.124
Lee YM, Lee DH. Mitochondrial Toxins and Healthy Lifestyle Meet at the Crossroad of Hormesis. Diabetes Metab J. 2019; 43(5):568-577 doi:10.4093/dmj.2019.0143
Nogacka AM, Gómez-Martín M, Suárez A et al. Xenobiotics Formed during Food Processing: Their Relation with the Intestinal Microbiota and Colorectal Cancer. Int J Mol Sci. 2019; 20(8) doi:10.3390/ijms20082051
Sri Harsha PSC, Lavelli V. Use of Grape Pomace Phenolics to Counteract Endogenous and Exogenous Formation of Advanced Glycation End-Products. Nutrients. 2019 Aug 15;11(8). pii: E1917. doi: 10.3390/nu11081917.
Semla M, Goc Z, Martiniaková M et al. Acrylamide: a common food toxin related to physiological functions and health. Physiol Res. 2017; 66(2):205-217 doi:10.33549/physiolres.933381
Wang A, Padula A, Sirota M, Woodruff TJ. Environmental influences on reproductive health: the importance of chemical exposures. Fertil Steril. 2016; 106(4):905-929
Morais S, Garcia e Costa F, de Lourdes Pereira M. Heavy Metals and Human Health. Environmental Health. 2012; DOI:10.5772/29869
Rai PK, Lee SS, Zhang M et al. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ Int. 2019; 125:365-385 doi:10.1016/j.envint.2019.01.067
Starling P, Charlton K, McMahon AT, Lucas C. Fish intake during pregnancy and foetal neurodevelopment--a systematic review of the evidence. Nutrients. 2015 Mar 18;7(3):2001-14. doi: 10.3390/nu7032001.
Seyfferth AL, McClatchy C, Paukett M. Arsenic, Lead, and Cadmium in U.S. Mushrooms and Substrate in Relation to Dietary Exposure. Environ Sci Technol. 2016 Sep 6;50(17):9661-70
Melgar MJ, Alonso J, García MA. Cadmium in edible mushrooms from NW Spain: Bioconcentration factors and consumer health implications. Food Chem Toxicol. 2016 Feb;88:13-20. doi: 10.1016/j.fct.2015.12.002.
House WA, Hart JJ, Norvell WA, Welch RM. Cadmium absorption and retention by rats fed durum wheat (Triticum turgidum L. var. durum) grain. Br J Nutr. 2003 Apr;89(4):499-508.
Brzóska MM, Moniuszko-Jakoniuk J. Interactions between cadmium and zinc in the organism. Food Chem Toxicol. 2001 Oct;39(10):967-80.
Kim K, Melough MM, Sakaki JR et al. Association between Urinary Cadmium to Zinc Intake Ratio with Adult Mortality in a Follow-Up Study of NHANES 1988-1994 and 1999-2004. Nutrients. 2019 Dec 24;12(1). pii: E56. doi: 10.3390/nu12010056.
Lin YS, Caffrey JL, Lin JW et al. Increased risk of cancer mortality associated with cadmium exposures in older Americans with low zinc intake. J Toxicol Environ Health A. 2013;76(1):1-15. doi: 10.1080/15287394.2012.722185.
Harada Y, Whitlow TH, Russell-Anelli J et al. The heavy metal budget of an urban rooftop farm. Sci Total Environ. 2019 Apr 10;660:115-125. doi: 10.1016/j.scitotenv.2018.12.463.
Entwistle JA, Amaibi PM, Dean JR et al. An apple a day? Assessing gardeners' lead exposure in urban agriculture sites to improve the derivation of soil assessment criteria. Environ Int. 2019; 122:130-141 doi:10.1016/j.envint.2018.10.054
Sierra Aragón M, Nakamaru YM, García-Carmona M et al. The role of organic amendment in soils affected by residual pollution of potentially harmful elements. Chemosphere. 2019 Dec;237:124549. doi: 10.1016/j.chemosphere.2019.124549.
Huang Y, He C, Shen C et al. Toxicity of cadmium and its health risks from leafy vegetable consumption. Food Funct. 2017 Apr 19;8(4):1373-1401. doi: 10.1039/c6fo01580h.
Gamble MV, Liu X, Slavkovich V et al. Folic acid supplementation lowers blood arsenic. Am J Clin Nutr. 2007 Oct;86(4):1202-9.
Bozack AK, Hall MN, Liu X et al. Folic acid supplementation enhances arsenic methylation: results from a folic acid and creatine supplementation randomized controlled trial in Bangladesh. Am J Clin Nutr. 2019 Feb 1;109(2):380-391. doi: 10.1093/ajcn/nqy148.
Rowland IR, Mallett AK, Flynn J, Hargreaves RJ. The effect of various dietary fibres on tissue concentration and chemical form of mercury after methylmercury exposure in mice. Arch Toxicol. 1986 Jul;59(2):94-8.
Zhai Q, Wang J, Cen S et al. odulation of the gut microbiota by a galactooligosaccharide protects against heavy metal lead accumulation in mice. Food Funct. 2019 Jun 19;10(6):3768-3781. doi: 10.1039/c9fo00587k.
House WA, Hart JJ, Norvell WA, Welch RM. Cadmium absorption and retention by rats fed durum wheat (Triticum turgidum L. var. durum) grain. Br J Nutr. 2003 Apr;89(4):499-508.
Winkler HC, Notter T, Meyer U, Naegeli H. Critical review of the safety assessment of titanium dioxide additives in food. J Nanobiotechnology. 2018 Jun 1;16(1):51. doi: 10.1186/s12951-018-0376-8.
Durán Agüero S, Angarita Dávila L, Escobar Contreras MC et al. Noncaloric Sweeteners in Children: A Controversial Theme. Biomed Res Int. 2018; 2018:4806534 doi:10.1155/2018/4806534
Liauchonak I, Qorri B, Dawoud F et al. Non-Nutritive Sweeteners and Their Implications on the Development of Metabolic Syndrome. Nutrients. 2019 Mar 16;11(3). pii: E644. doi: 10.3390/nu11030644.
Sweis IE, Cressey BC. Potential role of the common food additive manufactured citric acid in eliciting significant inflammatory reactions contributing to serious disease states: A series of four case reports. Toxicol Rep. 2018 Aug 9;5:808-812. doi: 10.1016/j.toxrep.2018.08.002. eCollection 2018.
Bhattacharyya S,, Shumard T, Xie H et al. A randomized trial of the effects of the no-carrageenan diet on ulcerative colitis disease activity. Nutr Healthy Aging. 2017 Mar 31;4(2):181-192. doi: 10.3233/NHA-170023.
Trasande L, Shaffer RM, Sathyanarayana S. Food Additives and Child Health. Pediatrics. 2018; 142(2) doi:10.1542/peds.2018-1408
Tselengidis A, Östergren PO. Lobbying against sugar taxation in the European Union: Analysing the lobbying arguments and tactics of stakeholders in the food and drink industries. Scand J Public Health. 2019 Jul;47(5):565-575. doi: 10.1177/1403494818787102.
Kramer NI, Hoffmans Y, Wu S et al. Characterizing the coverage of critical effects relevant in the safety evaluation of food additives by AOPs. Arch Toxicol. 2019 Aug;93(8):2115-2125. doi: 10.1007/s00204-019-02501-x.
Tennant D, Bánáti D, Kennedy M et al. Assessing and reporting uncertainties in dietary exposure analysis - Part II: Application of the uncertainty template to a practical example of exposure assessment. Food Chem Toxicol. 2017 Nov;109(Pt 1):68-80. doi: 10.1016/j.fct.2017.07.061.
Bastaki M, Farrell T, Bhusari S, Pant K, Kulkarni R. Lack of genotoxicity in vivo for food color additive Tartrazine. Food Chem Toxicol. 2017 Jul;105:278-284. doi: 10.1016/j.fct.2017.04.034.
Amchova P, Kotolova H, Ruda-Kucerova J. Health safety issues of synthetic food colorants. Regul Toxicol Pharmacol. 2015 Dec;73(3):914-22. doi: 10.1016/j.yrtph.2015.09.026.
Abbasi J. Chemicals in Consumer Products Associated With Early Puberty. JAMA. 2019; 321(16):1556 doi:10.1001/jama.2019.1111
Hagobian T, Smouse A, Streeter M et al. Randomized Intervention Trial to Decrease Bisphenol A Urine Concentrations in Women: Pilot Study. J Womens Health (Larchmt). 2017 Feb;26(2):128-132. doi: 10.1089/jwh.2016.5746.
Sajid M, Ilyas M. PTFE-coated non-stick cookware and toxicity concerns: a perspective. Environ Sci Pollut Res Int. 2017; 24(30):23436-23440 doi:10.1007/s11356-017-0095-y
Schlummer M, Sölch C, Meisel T et al. Emission of perfluoroalkyl carboxylic acids (PFCA) from heated surfaces made of polytetrafluoroethylene (PTFE) applied in food contact materials and consumer products. Chemosphere. 2015; 129:46-53 doi:10.1016/j.chemosphere.2014.11.036
Rivière G, Jean J, Gorecki S et al. Dietary exposure to perfluoroalkyl acids, brominated flame retardants and health risk assessment in the French infant total diet study. Food Chem Toxicol. 2019; 131:110561 doi:10.1016/j.fct.2019.06.008
Homme KG, Kern JK, Haley BE et al. New science challenges old notion that mercury dental amalgam is safe. Biometals. 2014 Feb;27(1):19-24. doi: 10.1007/s10534-013-9700-9.
Bjørklund G, Dadar M, Mutter J, Aaseth J. The toxicology of mercury: Current research and emerging trends. Environ Res. 2017; 159:545-554 doi:10.1016/j.envres.2017.08.051
Patocka J, Kuca K. Lead exposure and environmental health. Mil Med Sci Lett. 2016; 85(4):147-163
Lead Poisoning Prevention Program. Lead-based paint and lead contaminated dust are the most common sources of lead exposure for children. www.healthoregon.org/lead
Kaufmann A. Lead in wine. Food Addit Contam. 1998 May-Jun;15(4):437-45.
Oomen AG et al. Cadmium in de Kempen: een integrale risicobeoordeling. https://www.rivm.nl/bibliotheek/rapporten/320007001.html
Zhou H, Yang WT, Zhou X et al. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment. Int J Environ Res Public Health. 2016; 13(3) doi:10.3390/ijerph13030289
Paltseva A, Cheng Z, Deeb M et al. Accumulation of arsenic and lead in garden-grown vegetables: Factors and mitigation strategies. Sci Total Environ. 2018; 640-641:273-283 doi:10.1016/j.scitotenv.2018.05.296
Bánáti D. European perspectives of food safety. J Sci Food Agric. 2014; 94(10):1941-6 doi:10.1002/jsfa.6611
Kim SA, Lee YM, Choi JY et al. Evolutionarily adapted hormesis-inducing stressors can be a practical solution to mitigate harmful effects of chronic exposure to low dose chemical mixtures. Environ Pollut. 2018; 233:725-734 doi:10.1016/j.envpol.2017.10.124
Bilal M, Iqbal HMN. An insight into toxicity and human-health-related adverse consequences of cosmeceuticals - A review. Sci Total Environ. 2019; 670:555-568 doi:10.1016/j.scitotenv.2019.03.261
Tietz T, Lenzner A, Kolbaum AE et al. Aggregated aluminium exposure: risk assessment for the general population. Arch Toxicol. 2019; 93(12):3503-3521 doi:10.1007/s00204-019-02599-z
Meeusen J. Farmaca in drinkwater. Voedingsgeneeskunde. 2018; 19(4):16-17