De aandacht die calcium als voedingsstof steeds heeft genoten, is magnesium nooit ten deel gevallen. Die aandacht is niet alleen geheel onterecht, maar is zelfs schadelijk uitgedraaid. In deze monografie draaien we de rollen om. Inname van magnesium is hetgene waar we op moeten letten, met oog op een gunstige calcium-magnesiumverhouding. Fysiologie vormt in dit verhaal de leidraad, maar voorzetten worden ook gegeven vanuit de epidemiologische en klinische studies. Deel 2 kunt u in het volgende nummer lezen.
Beste bezoeker, u heeft geen toegang.
Enkel (web)abonnees hebben toegang tot tijdschriftartikelen. Het webabonnement is nog in de maak.
U kunt zich wel alvast (gratis) registreren en tal van andere webartikelen raadplegen!
Auteur
Trefwoorden:
Verschenen in
Referenties
Element (Mg, Ca) composition of seawater and soil
1. Earth’s Crust: Elements, Minerals and Rocks, accessed 5 May 2023
https://www.clearias.com/earths-crust-elements-minerals-rocks/#minerals-...
2. Griffin, D. W., Silvestri, E. E., Bowling, C. Y., Boe, T., Smith, D. B., & Nichols, T. L. (2014). Anthrax and the geochemistry of soils in the contiguous United States. Geosciences, 4(3), 114-127.
https://www.mdpi.com/2076-3263/4/3/114
3. Geochemical and Mineralogical Maps, with Interpretation, for Soils of the Conterminous United States accessed 05 may 2023
https://pubs.usgs.gov/sir/2017/5118/sir20175118_element.php?el=12
4. Bergman, J. (2010). Is the Sodium Chloride Level in the Oceans Evidence for Abiogenesis?. Answers Res. J, 3, 159-164.
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a0de06325...
Evolution
5. Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin EV. Open questions on the origin of life at anoxic geothermal fields. Orig Life Evol Biosph. 2012 Oct;42(5):507-16. doi: 10.1007/s11084-012-9315-0. Epub 2012 Nov 7. PMID: 23132762; PMCID: PMC3997052.
https://pubmed.ncbi.nlm.nih.gov/23132762/
6. Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin EV. Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):E821-30. doi: 10.1073/pnas.1117774109. Epub 2012 Feb 13. PMID: 22331915; PMCID: PMC3325685.
https://pubmed.ncbi.nlm.nih.gov/22331915/
7. Evolution: Out Of The Sea, By Christie Wilcox on July 28, 2012, accessed 5 May 2023
https://blogs.scientificamerican.com/science-sushi/evolution-out-of-the-...
8. Keogh L, Kilroy D, Bhattacharjee S. The struggle to equilibrate outer and inner milieus: Renal evolution revisited. Ann Anat. 2021 Jan;233:151610. doi: 10.1016/j.aanat.2020.151610. Epub 2020 Oct 13. PMID: 33065247.
https://pubmed.ncbi.nlm.nih.gov/33065247/
9. Nielsen, F. Evolutionary events culminating in specific minerals becoming essential for life. Eur J Nutr 39, 62–66 (2000).
https://doi.org/10.1007/s003940050003
10. Kawarazaki W, Fujita T. Aberrant Rac1-mineralocorticoid receptor pathways in salt-sensitive hypertension. Clin Exp Pharmacol Physiol. 2013 Dec;40(12):929-36. doi: 10.1111/1440-1681.12177. PMID: 24111570.
https://pubmed.ncbi.nlm.nih.gov/24111570/
11. Donato V, Lacquaniti A, Cernaro V, Lorenzano G, Trimboli D, Buemi A, Lupica R, Buemi M. From water to aquaretics: a legendary route. Cell Physiol Biochem. 2014;33(5):1369-88. doi: 10.1159/000358704. Epub 2014 May 5. PMID: 24853354.
https://pubmed.ncbi.nlm.nih.gov/24853354/
12. Fournier D, Luft FC, Bader M, Ganten D, Andrade-Navarro MA. Emergence and evolution of the renin-angiotensin-aldosterone system. J Mol Med (Berl). 2012 May;90(5):495-508. doi: 10.1007/s00109-012-0894-z. Epub 2012 Apr 14. PMID: 22527880; PMCID: PMC3354321.
https://pubmed.ncbi.nlm.nih.gov/22527880/
13. Lyons G. Biofortification of Cereals With Foliar Selenium and Iodine Could Reduce Hypothyroidism. Front Plant Sci. 2018 Jun 8;9:730. doi: 10.3389/fpls.2018.00730. PMID: 29951072; PMCID: PMC6008543.
https://pubmed.ncbi.nlm.nih.gov/29951072/
14. Fuge, R. (2012). Soils and iodine deficiency. In Essentials of medical geology: revised edition (pp. 417-432). Dordrecht: Springer Netherlands.
https://link.springer.com/chapter/10.1007/978-94-007-4375-5_17
15. Kazmierczak, J., Kempe, S., & Kremer, B. (2013). Calcium in the early evolution of living systems: a biohistorical approach. Current Organic Chemistry, 17(16), 1738-1750.
https://www.ingentaconnect.com/content/ben/coc/2013/00000017/00000016/ar...
(Calcium) cell signaling
16. Clapham DE. Calcium signaling. Cell. 2007 Dec 14;131(6):1047-58. doi: 10.1016/j.cell.2007.11.028. PMID: 18083096.
https://pubmed.ncbi.nlm.nih.gov/18083096/
17. Cai X, Wang X, Patel S, Clapham DE. Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view. Cell Calcium. 2015 Mar;57(3):166-73. doi: 10.1016/j.ceca.2014.11.007. Epub 2014 Dec 2. PMID: 25498309; PMCID: PMC4355082.
https://pubmed.ncbi.nlm.nih.gov/25498309/
18. Lima GA, Lima PD, Barros Mda G, Vardiero LP, Melo EF, Paranhos-Neto Fde P, Madeira M, Farias ML. Calcium intake: good for the bones but bad for the heart? An analysis of clinical studies. Arch Endocrinol Metab. 2016 Jun;60(3):252-63. doi: 10.1590/2359-3997000000173. PMID: 27355855.
https://pubmed.ncbi.nlm.nih.gov/27355855/
19. Touyz RM. Magnesium supplementation as an adjuvant to synthetic calcium channel antagonists in the treatment of hypertension. Med Hypotheses. 1991 Oct;36(2):140-1. doi: 10.1016/0306-9877(91)90256-x. PMID: 1664038.
https://pubmed.ncbi.nlm.nih.gov/1664038/#:~:text=Magnesium%20(Mg2%2B)%20has%20antagonistic,used%20as%20anti%2Dhypertensive%20agents.
Intracellular elements
20. Schroll, A. (1998). Importance of magnesium for the electrolyte homeostasis–an overview. In Advances in Magnesium Research: Magnesium in Cardiology: Proceedings of the 5th European Congress on Magnesium. London: John Libbey Company (pp. 463-72).
https://scholar.google.nl/scholar?hl=nl&as_sdt=0%2C5&q=Schroll+A.+Import...
see also http://www.mgwater.com/schroll.shtml
Cellular pumps
21. Verkhratsky A, Trebak M, Perocchi F, Khananshvili D, Sekler I. Crosslink between calcium and sodium signalling. Exp Physiol. 2018 Feb 1;103(2):157-169. doi: 10.1113/EP086534. Epub 2018 Jan 16. PMID: 29210126; PMCID: PMC6813793.
https://pubmed.ncbi.nlm.nih.gov/29210126/
22. Murphy E, Eisner DA. Regulation of intracellular and mitochondrial sodium in health and disease. Circ Res. 2009 Feb 13;104(3):292-303. doi: 10.1161/CIRCRESAHA.108.189050. PMID: 19213964; PMCID: PMC2662399.
https://pubmed.ncbi.nlm.nih.gov/19213964/
23. Karppanen H. Minerals and blood pressure. Ann Med. 1991 Aug;23(3):299-305. doi: 10.3109/07853899109148064. PMID: 1930921.
https://pubmed.ncbi.nlm.nih.gov/1930921/
24. Romani AM. Cellular magnesium homeostasis. Arch Biochem Biophys. 2011 Aug 1;512(1):1-23. doi: 10.1016/j.abb.2011.05.010. Epub 2011 May 27. PMID: 21640700; PMCID: PMC3133480.
https://pubmed.ncbi.nlm.nih.gov/21640700/
25. Gagnon KB, Delpire E. Sodium Transporters in Human Health and Disease. Front Physiol. 2021 Feb 25;11:588664. doi: 10.3389/fphys.2020.588664. PMID: 33716756; PMCID: PMC7947867.
https://pubmed.ncbi.nlm.nih.gov/33716756/
26. Li T, Chen J, Zeng Z. Pathophysiological role of calcium channels and transporters in the multiple myeloma. Cell Commun Signal. 2021 Sep 27;19(1):99. doi: 10.1186/s12964-021-00781-4. PMID: 34579758; PMCID: PMC8477534.
https://pubmed.ncbi.nlm.nih.gov/34579758/
26a. Keogh L, Kilroy D, Bhattacharjee S. The struggle to equilibrate outer and inner milieus: Renal evolution revisited. Ann Anat. 2021 Jan;233:151610. doi: 10.1016/j.aanat.2020.151610. Epub 2020 Oct 13. PMID: 33065247.
https://pubmed.ncbi.nlm.nih.gov/33065247/
26b. Evans RG. Evolution of the glomerulus in a marine environment and its implications for renal function in terrestrial vertebrates. Am J Physiol Regul Integr Comp Physiol. 2023 Feb 1;324(2):R143-R151. doi: 10.1152/ajpregu.00210.2022. Epub 2022 Dec 19. PMID: 36534585.
https://pubmed.ncbi.nlm.nih.gov/36534585/
26c. Turner N, Haga KL, Hulbert AJ, Else PL. Relationship between body size, Na+-K+-ATPase activity, and membrane lipid composition in mammal and bird kidney. Am J Physiol Regul Integr Comp Physiol. 2005 Jan;288(1):R301-10. doi: 10.1152/ajpregu.00297.2004. Epub 2004 Sep 30. PMID: 15458965.
https://pubmed.ncbi.nlm.nih.gov/15458965/
Magnesium reviews
27. de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Physiol Rev. 2015 Jan;95(1):1-46. doi: 10.1152/physrev.00012.2014. PMID: 25540137.
https://pubmed.ncbi.nlm.nih.gov/25540137/
28. Rosanoff A. Rising Ca:Mg intake ratio from food in USA Adults: a concern? Magnes Res. 2010 Dec;23(4):S181-93. doi: 10.1684/mrh.2010.0221. Epub 2011 Jan 14. PMID: 21233058.
https://pubmed.ncbi.nlm.nih.gov/21233058/
29. Costello RB, Rosanoff A, Dai Q, Saldanha LG, Potischman NA. Perspective: Characterization of Dietary Supplements Containing Calcium and Magnesium and Their Respective Ratio-Is a Rising Ratio a Cause for Concern? Adv Nutr. 2021 Mar 31;12(2):291-297. doi: 10.1093/advances/nmaa160. PMID: 33367519; PMCID: PMC8264923.
https://pubmed.ncbi.nlm.nih.gov/33367519/
30. Rosanoff A. The high heart health value of drinking-water magnesium. Med Hypotheses. 2013 Dec;81(6):1063-5. doi: 10.1016/j.mehy.2013.10.003. PMID: 24436973.
https://pubmed.ncbi.nlm.nih.gov/24436973/
31. Rosanoff A, Dai Q, Shapses SA. Essential Nutrient Interactions: Does Low or Suboptimal Magnesium Status Interact with Vitamin D and/or Calcium Status? Adv Nutr. 2016 Jan 15;7(1):25-43. doi: 10.3945/an.115.008631. PMID: 26773013; PMCID: PMC4717874.
https://pubmed.ncbi.nlm.nih.gov/26773013/
32. Rosanoff A, Costello RB, Johnson GH. Effectively Prescribing Oral Magnesium Therapy for Hypertension: A Categorized Systematic Review of 49 Clinical Trials. Nutrients. 2021 Jan 10;13(1):195. doi: 10.3390/nu13010195. PMID: 33435187; PMCID: PMC7827637.
https://pubmed.ncbi.nlm.nih.gov/33435187/
33. Rosanoff A, West C, Elin RJ, Micke O, Baniasadi S, Barbagallo M, Campbell E, Cheng FC, Costello RB, Gamboa-Gomez C, Guerrero-Romero F, Gletsu-Miller N, von Ehrlich B, Iotti S, Kahe K, Kim DJ, Kisters K, Kolisek M, Kraus A, Maier JA, Maj-Zurawska M, Merolle L, Nechifor M, Pourdowlat G, Shechter M, Song Y, Teoh YP, Touyz RM, Wallace TC, Yokota K, Wolf F; MaGNet Global Magnesium Project (MaGNet). Recommendation on an updated standardization of serum magnesium reference ranges. Eur J Nutr. 2022 Oct;61(7):3697-3706. doi: 10.1007/s00394-022-02916-w. Epub 2022 Jun 10. PMID: 35689124; PMCID: PMC9186275.
https://pubmed.ncbi.nlm.nih.gov/35689124/
34. Rosanoff A, West C, Elin RJ, Micke O, Baniasadi S, Barbagallo M, Campbell E, Cheng FC, Costello RB, Gamboa-Gomez C, Guerrero-Romero F, Gletsu-Miller N, von Ehrlich B, Iotti S, Kahe K, Kim DJ, Kisters K, Kolisek M, Kraus A, Maier JA, Maj-Zurawska M, Merolle L, Nechifor M, Pourdowlat G, Shechter M, Song Y, Teoh YP, Touyz RM, Wallace TC, Yokota K, Wolf F; MaGNet Global Magnesium Project (MaGNet). Recommendation on an updated standardization of serum magnesium reference ranges. Eur J Nutr. 2022 Oct;61(7):3697-3706. doi: 10.1007/s00394-022-02916-w. Epub 2022 Jun 10. PMID: 35689124; PMCID: PMC9186275.
https://pubmed.ncbi.nlm.nih.gov/35689124/
35. Rosanoff A, Weaver CM, Rude RK. Suboptimal magnesium status in the United States: are the health consequences underestimated? Nutr Rev. 2012 Mar;70(3):153-64. doi: 10.1111/j.1753-4887.2011.00465.x. Epub 2012 Feb 15. PMID: 22364157.
https://pubmed.ncbi.nlm.nih.gov/22364157/
Magnesium in food
36. Cazzola R, Della Porta M, Manoni M, Iotti S, Pinotti L, Maier JA. Going to the roots of reduced magnesium dietary intake: A tradeoff between climate changes and sources. Heliyon. 2020 Nov 3;6(11):e05390. doi: 10.1016/j.heliyon.2020.e05390. PMID: 33204877; PMCID: PMC7649274.
https://pubmed.ncbi.nlm.nih.gov/33204877/
37. RIVM. Nederlands Voedingsstoffenbestand (NEVO) – online
38. U.S. DEPARTMENT OF AGRICULTURE (USDA). National Nutrient Database for Standard Reference 2019
Contents Magnesium (Mg) All Foods, USDA Data Accessed 06 May 2023
https://m.andrafarm.com/_andra.php?_i=daftar-usda&_en=ENGLISH&jobs=&perh...
39. Rylander R. Magnesium in drinking water - a case for prevention? J Water Health. 2014 Mar;12(1):34-40. doi: 10.2166/wh.2013.110. PMID: 24642430.
39a. Santos HO, May TL, Bueno AA. Eating more sardines instead of fish oil supplementation: Beyond omega-3 polyunsaturated fatty acids, a matrix of nutrients with cardiovascular benefits. Front Nutr. 2023 Apr 14;10:1107475. doi: 10.3389/fnut.2023.1107475. PMID: 37143475; PMCID: PMC10153001. https://pubmed.ncbi.nlm.nih.gov/37143475/
https://pubmed.ncbi.nlm.nih.gov/24642430/
40. Kožíšek, F. (2003). Health significance of drinking water calcium and magnesium. National Institute of Public Health, 29, 9285-9286.
http://www.healthy-water.ca/Calcium%20%26%20Magnesium%20in%20Drinking%20...
40a. Azoulay A, Garzon P, Eisenberg MJ. Comparison of the mineral content of tap water and bottled waters. J Gen Intern Med. 2001 Mar;16(3):168-75. doi: 10.1111/j.1525-1497.2001.04189.x. PMID: 11318912; PMCID: PMC1495189.
https://pubmed.ncbi.nlm.nih.gov/11318912/
41. Muskiet, F. A. J. (2015). Eten we teveel zout (natrium)? Een holistische kijk op onze Na-K-Ca-Mg en zuur/base balans. Ned Tijdschr Klin Chem Labgeneesk, 40(3), 164-193.
https://www.nvkc.nl/files/ntkc/N60_049408_BW_NVKC_Juli2015_WQ_01.pdf
41a. Schuchardt JP, Hahn A. Intestinal Absorption and Factors Influencing Bioavailability of Magnesium-An Update. Curr Nutr Food Sci. 2017 Nov;13(4):260-278. doi: 10.2174/1573401313666170427162740. PMID: 29123461; PMCID: PMC5652077.
https://pubmed.ncbi.nlm.nih.gov/29123461/
41b. Straub DA. Calcium supplementation in clinical practice: a review of forms, doses, and indications. Nutr Clin Pract. 2007 Jun;22(3):286-96. doi: 10.1177/0115426507022003286. PMID: 17507729.
https://pubmed.ncbi.nlm.nih.gov/17507729/
42. van Rossum, C. T., Fransen, H. P., Verkaik-Kloosterman, J., Buurma-Rethans, E. J., & Ocké, M. C. (2011). Dutch National Food Consumption Survey 2007-2010: Diet of children and adults aged 7 to 69 years.
https://www.rivm.nl/bibliotheek/rapporten/350050006.pdf
42a. Ranade VV, Somberg JC. Bioavailability and pharmacokinetics of magnesium after administration of magnesium salts to humans. Am J Ther. 2001 Sep-Oct;8(5):345-57. doi: 10.1097/00045391-200109000-00008. PMID: 11550076.
https://pubmed.ncbi.nlm.nih.gov/11550076/
43. Sirot V, Dumas C, Leblanc JC, Margaritis I. Food and nutrient intakes of French frequent seafood consumers with regard to fish consumption recommendations: results from the CALIPSO study. Br J Nutr. 2011 May;105(9):1369-80. doi: 10.1017/S0007114510005027. Epub 2010 Dec 16. PMID: 21205369.
https://pubmed.ncbi.nlm.nih.gov/21205369/
44. Cordain L. Cereal grains: humanity's double-edged sword. World Rev Nutr Diet. 1999;84:19-73. doi: 10.1159/000059677. PMID: 10489816.
https://pubmed.ncbi.nlm.nih.gov/10489816/
45. Bishop, W. M., & Zubeck, H. M. (2012). Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J Nutr Food Sci, 2(5), 1-6.
https://lightlife-vs.com.br/wp-content/uploads/2021/05/Detoksskoon.pdf
45a. Circuncisão AR, Catarino MD, Cardoso SM, Silva AMS. Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Mar Drugs. 2018 Oct 23;16(11):400. doi: 10.3390/md16110400. PMID: 30360515; PMCID: PMC6266857.
https://pubmed.ncbi.nlm.nih.gov/30360515/
Magnesium physiology and function
46. Wu, Joyce, and Andrew Carter. "Magnesium: the forgotten electrolyte." (2007).
https://www.nps.org.au/australian-prescriber/articles/magnesium-the-forg...
47. Barbagallo, M., & Dominguez, L. J. (2010). Magnesium and aging. Current pharmaceutical design, 16(7), 832-839.
https://www.ingentaconnect.com/content/ben/cpd/2010/00000016/00000007/ar...
48. Workinger JL, Doyle RP, Bortz J. Challenges in the Diagnosis of Magnesium Status. Nutrients. 2018 Sep 1;10(9):1202. doi: 10.3390/nu10091202. PMID: 30200431; PMCID: PMC6163803.
https://pubmed.ncbi.nlm.nih.gov/30200431/
49. Weglicki WB, Phillips TM, Mak IT, Cassidy MM, Dickens BF, Stafford R, Kramer JH. Cytokines, neuropeptides, and reperfusion injury during magnesium deficiency. Ann N Y Acad Sci. 1994 Jun 17;723:246-57. PMID: 7518201.
https://pubmed.ncbi.nlm.nih.gov/7518201/
50. Bede O, Nagy D, Surányi A, Horváth I, Szlávik M, Gyurkovits K. Effects of magnesium supplementation on the glutathione redox system in atopic asthmatic children. Inflamm Res. 2008 Jun;57(6):279-86. doi: 10.1007/s00011-007-7077-3. PMID: 18516713.
https://pubmed.ncbi.nlm.nih.gov/18516713/
51. Iseri LT, French JH. Magnesium: nature's physiologic calcium blocker. Am Heart J. 1984 Jul;108(1):188-93. doi: 10.1016/0002-8703(84)90572-6. PMID: 6375330.
https://pubmed.ncbi.nlm.nih.gov/6375330/
52. Ferrè S, Hoenderop JG, Bindels RJ. Sensing mechanisms involved in Ca2+ and Mg2+ homeostasis. Kidney Int. 2012 Dec;82(11):1157-66. doi: 10.1038/ki.2012.179. Epub 2012 May 23. PMID: 22622503.
https://pubmed.ncbi.nlm.nih.gov/22622503/
53. Zaichick S, Zaichick V. The effect of age and gender on 38 chemical element contents in human iliac crest investigated by instrumental neutron activation analysis. J Trace Elem Med Biol. 2010 Jan;24(1):1-6. doi: 10.1016/j.jtemb.2009.07.002. Epub 2009 Aug 21. PMID: 20122572.
https://pubmed.ncbi.nlm.nih.gov/20122572/
53a. Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol. 2005 Jul;289(1):F8-28. doi: 10.1152/ajprenal.00336.2004. PMID: 15951480.
https://pubmed.ncbi.nlm.nih.gov/15951480/
53b. Ciosek Ż, Kot K, Kosik-Bogacka D, Łanocha-Arendarczyk N, Rotter I. The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue. Biomolecules. 2021 Mar 28;11(4):506. doi: 10.3390/biom11040506. PMID: 33800689; PMCID: PMC8066206.
https://pubmed.ncbi.nlm.nih.gov/33800689/
54. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington (DC): National Academies Press (US); 1997. PMID: 23115811.
https://pubmed.ncbi.nlm.nih.gov/23115811/
55. Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A. Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta. 2000 Apr;294(1-2):1-26. doi: 10.1016/s0009-8981(99)00258-2. PMID: 10727669.
https://pubmed.ncbi.nlm.nih.gov/10727669/
Magnesium and disease
56. Barbagallo M, Dominguez LJ. Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch Biochem Biophys. 2007 Feb 1;458(1):40-7. doi: 10.1016/j.abb.2006.05.007. Epub 2006 Jun 12. PMID: 16808892.
https://pubmed.ncbi.nlm.nih.gov/16808892/
57. Barbagallo M, Belvedere M, Dominguez LJ. Magnesium homeostasis and aging. Magnes Res. 2009 Dec;22(4):235-46. doi: 10.1684/mrh.2009.0187. PMID: 20228001.
https://pubmed.ncbi.nlm.nih.gov/20228001/
58. Barbagallo M, Dominguez LJ. Magnesium and aging. Curr Pharm Des. 2010;16(7):832-9. doi: 10.2174/138161210790883679. PMID: 20388094.
https://pubmed.ncbi.nlm.nih.gov/20388094/
59. Jahnen-Dechent W, Ketteler M. Magnesium basics. Clin Kidney J. 2012 Feb;5(Suppl 1):i3-i14. doi: 10.1093/ndtplus/sfr163. PMID: 26069819; PMCID: PMC4455825.
https://pubmed.ncbi.nlm.nih.gov/26069819/
60. Barbagallo M, Dominguez LJ, Galioto A, Pineo A, Belvedere M. Oral magnesium supplementation improves vascular function in elderly diabetic patients. Magnes Res. 2010 Sep;23(3):131-7. doi: 10.1684/mrh.2010.0214. Epub 2010 Aug 24. PMID: 20736142.
https://pubmed.ncbi.nlm.nih.gov/20736142/
61. Del Gobbo LC, Imamura F, Wu JH, de Oliveira Otto MC, Chiuve SE, Mozaffarian D. Circulating and dietary magnesium and risk of cardiovascular disease: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2013 Jul;98(1):160-73. doi: 10.3945/ajcn.112.053132. Epub 2013 May 29. PMID: 23719551; PMCID: PMC3683817.
https://pubmed.ncbi.nlm.nih.gov/23719551/
62. Dibaba DT, Xun P, He K. Dietary magnesium intake is inversely associated with serum C-reactive protein levels: meta-analysis and systematic review. Eur J Clin Nutr. 2014 Apr;68(4):510-6. doi: 10.1038/ejcn.2014.7. Epub 2014 Feb 12. Erratum in: Eur J Clin Nutr. 2015 Mar;69(3):410. PMID: 24518747; PMCID: PMC3975661.
https://pubmed.ncbi.nlm.nih.gov/24518747/
63. Dong JY, Xun P, He K, Qin LQ. Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diabetes Care. 2011 Sep;34(9):2116-22. doi: 10.2337/dc11-0518. PMID: 21868780; PMCID: PMC3161260.
https://pubmed.ncbi.nlm.nih.gov/21868780/
64. Glasdam SM, Glasdam S, Peters GH. The Importance of Magnesium in the Human Body: A Systematic Literature Review. Adv Clin Chem. 2016;73:169-93. doi: 10.1016/bs.acc.2015.10.002. Epub 2016 Jan 13. PMID: 26975973.
https://pubmed.ncbi.nlm.nih.gov/26975973/
65. Guerrero-Romero F, Jaquez-Chairez FO, Rodríguez-Morán M. Magnesium in metabolic syndrome: a review based on randomized, double-blind clinical trials. Magnes Res. 2016 Apr 1;29(4):146-153. doi: 10.1684/mrh.2016.0404. PMID: 27834189.
https://pubmed.ncbi.nlm.nih.gov/27834189/
66. Houston M. The role of magnesium in hypertension and cardiovascular disease. J Clin Hypertens (Greenwich). 2011 Nov;13(11):843-7. doi: 10.1111/j.1751-7176.2011.00538.x. Epub 2011 Sep 26. PMID: 22051430; PMCID: PMC8108907.
https://pubmed.ncbi.nlm.nih.gov/22051430/
67. Joosten MM, Gansevoort RT, Mukamal KJ, van der Harst P, Geleijnse JM, Feskens EJ, Navis G, Bakker SJ; PREVEND Study Group. Urinary and plasma magnesium and risk of ischemic heart disease. Am J Clin Nutr. 2013 Jun;97(6):1299-306. doi: 10.3945/ajcn.112.054114. Epub 2013 Mar 13. PMID: 23485414.
https://pubmed.ncbi.nlm.nih.gov/23485414/
68. Joosten MM, Gansevoort RT, Mukamal KJ, Kootstra-Ros JE, Feskens EJ, Geleijnse JM, Navis G, Bakker SJ; PREVEND Study Group. Urinary magnesium excretion and risk of hypertension: the prevention of renal and vascular end-stage disease study. Hypertension. 2013 Jun;61(6):1161-7. doi: 10.1161/HYPERTENSIONAHA.113.01333. Epub 2013 Apr 22. PMID: 23608650.
https://pubmed.ncbi.nlm.nih.gov/23608650/
69. Joshi A, Siva C. Magnesium disorders can cause calcium pyrophosphate deposition disease: A case report and literature review. Eur J Rheumatol. 2018 Mar;5(1):53-57. doi: 10.5152/eurjrheum.2017.16116. Epub 2017 Aug 29. PMID: 29657876; PMCID: PMC5895153.
https://pubmed.ncbi.nlm.nih.gov/29657876/
70. Ju SY, Choi WS, Ock SM, Kim CM, Kim DH. Dietary magnesium intake and metabolic syndrome in the adult population: dose-response meta-analysis and meta-regression. Nutrients. 2014 Dec 22;6(12):6005-19. doi: 10.3390/nu6126005. PMID: 25533010; PMCID: PMC4277012.
https://pubmed.ncbi.nlm.nih.gov/25533010/
71. Karppanen H. Minerals and blood pressure. Ann Med. 1991 Aug;23(3):299-305. doi: 10.3109/07853899109148064. PMID: 1930921.
https://pubmed.ncbi.nlm.nih.gov/1930921/
72. Kolte D, Vijayaraghavan K, Khera S, Sica DA, Frishman WH. Role of magnesium in cardiovascular diseases. Cardiol Rev. 2014 Jul-Aug;22(4):182-92. doi: 10.1097/CRD.0000000000000003. PMID: 24896250.
https://pubmed.ncbi.nlm.nih.gov/24896250/
73. Laires MJ, Monteiro CP, Bicho M. Role of cellular magnesium in health and human disease. Front Biosci. 2004 Jan 1;9:262-76. doi: 10.2741/1223. PMID: 14766364.
https://pubmed.ncbi.nlm.nih.gov/14766364/
74. Laires MJ, Moreira H, Monteiro CP, Sardinha L, Limão F, Veiga L, Gonçalves A, Ferreira A, Bicho M. Magnesium, insulin resistance and body composition in healthy postmenopausal women. J Am Coll Nutr. 2004 Oct;23(5):510S-513S. doi: 10.1080/07315724.2004.10719391. PMID: 15466953.
https://pubmed.ncbi.nlm.nih.gov/15466953/
75. Larsson SC, Orsini N, Wolk A. Dietary magnesium intake and risk of stroke: a meta-analysis of prospective studies. Am J Clin Nutr. 2012 Feb;95(2):362-6. doi: 10.3945/ajcn.111.022376. Epub 2011 Dec 28. PMID: 22205313.
https://pubmed.ncbi.nlm.nih.gov/22205313/
76. Larsson SC, Wolk A. Magnesium intake and risk of type 2 diabetes: a meta-analysis. J Intern Med. 2007 Aug;262(2):208-14. doi: 10.1111/j.1365-2796.2007.01840.x. PMID: 17645588.
https://pubmed.ncbi.nlm.nih.gov/17645588/
77. Ma J, Folsom AR, Melnick SL, Eckfeldt JH, Sharrett AR, Nabulsi AA, Hutchinson RG, Metcalf PA. Associations of serum and dietary magnesium with cardiovascular disease, hypertension, diabetes, insulin, and carotid arterial wall thickness: the ARIC study. Atherosclerosis Risk in Communities Study. J Clin Epidemiol. 1995 Jul;48(7):927-40. doi: 10.1016/0895-4356(94)00200-a. PMID: 7782801.
https://pubmed.ncbi.nlm.nih.gov/7782801/
78. Maier JA. Endothelial cells and magnesium: implications in atherosclerosis. Clin Sci (Lond). 2012 May;122(9):397-407. doi: 10.1042/CS20110506. PMID: 22248353.
https://pubmed.ncbi.nlm.nih.gov/22248353/
79. Mazur A, Maier JA, Rock E, Gueux E, Nowacki W, Rayssiguier Y. Magnesium and the inflammatory response: potential physiopathological implications. Arch Biochem Biophys. 2007 Feb 1;458(1):48-56. doi: 10.1016/j.abb.2006.03.031. Epub 2006 Apr 19. PMID: 16712775.
https://pubmed.ncbi.nlm.nih.gov/16712775/
80. Wolf FI, Maier JA, Nasulewicz A, Feillet-Coudray C, Simonacci M, Mazur A, Cittadini A. Magnesium and neoplasia: from carcinogenesis to tumor growth and progression or treatment. Arch Biochem Biophys. 2007 Feb 1;458(1):24-32. doi: 10.1016/j.abb.2006.02.016. Epub 2006 Mar 9. PMID: 16564020.
https://pubmed.ncbi.nlm.nih.gov/16564020/
81. Nielsen FH. Magnesium, inflammation, and obesity in chronic disease. Nutr Rev. 2010 Jun;68(6):333-40. doi: 10.1111/j.1753-4887.2010.00293.x. PMID: 20536778.
https://pubmed.ncbi.nlm.nih.gov/20536778/
82. Phelan D, Molero P, Martínez-González MA, Molendijk M. Magnesium and mood disorders: systematic review and meta-analysis. BJPsych Open. 2018 Jul;4(4):167-179. doi: 10.1192/bjo.2018.22. PMID: 29897029; PMCID: PMC6034436.
https://pubmed.ncbi.nlm.nih.gov/29897029/
83. Randell EW, Mathews M, Gadag V, Zhang H, Sun G. Relationship between serum magnesium values, lipids and anthropometric risk factors. Atherosclerosis. 2008 Jan;196(1):413-419. doi: 10.1016/j.atherosclerosis.2006.11.024. Epub 2006 Dec 8. PMID: 17161404.
https://pubmed.ncbi.nlm.nih.gov/17161404/
84. Reinhart RA. Magnesium metabolism. A review with special reference to the relationship between intracellular content and serum levels. Arch Intern Med. 1988 Nov;148(11):2415-20. doi: 10.1001/archinte.148.11.2415. PMID: 3056314.
https://pubmed.ncbi.nlm.nih.gov/3056314/
85. Reinhart RA. Magnesium deficiency: recognition and treatment in the emergency medicine setting. Am J Emerg Med. 1992 Jan;10(1):78-83. doi: 10.1016/0735-6757(92)90133-i. PMID: 1736922.
https://pubmed.ncbi.nlm.nih.gov/1736922/
86. Steck SE, Omofuma OO, Su LJ, Maise AA, Woloszynska-Read A, Johnson CS, Zhang H, Bensen JT, Fontham ETH, Mohler JL, Arab L. Calcium, magnesium, and whole-milk intakes and high-aggressive prostate cancer in the North Carolina-Louisiana Prostate Cancer Project (PCaP). Am J Clin Nutr. 2018 May 1;107(5):799-807. doi: 10.1093/ajcn/nqy037. PMID: 29722851.
https://pubmed.ncbi.nlm.nih.gov/29722851/
87. Volpe SL. Magnesium in disease prevention and overall health. Adv Nutr. 2013 May 1;4(3):378S-83S. doi: 10.3945/an.112.003483. PMID: 23674807; PMCID: PMC3650510.
https://pubmed.ncbi.nlm.nih.gov/23674807/
88. Wang J, Um P, Dickerman BA, Liu J. Zinc, Magnesium, Selenium and Depression: A Review of the Evidence, Potential Mechanisms and Implications. Nutrients. 2018 May 9;10(5):584. doi: 10.3390/nu10050584. PMID: 29747386; PMCID: PMC5986464.
https://pubmed.ncbi.nlm.nih.gov/29747386/
Magnesium and bone/osteoporosis
89. Groenendijk I, van Delft M, Versloot P, van Loon LJC, de Groot LCPGM. Impact of magnesium on bone health in older adults: A systematic review and meta-analysis. Bone. 2022 Jan;154:116233. doi: 10.1016/j.bone.2021.116233. Epub 2021 Oct 16. PMID: 34666201.
https://pubmed.ncbi.nlm.nih.gov/34666201/
90. Rondanelli M, Faliva MA, Tartara A, Gasparri C, Perna S, Infantino V, Riva A, Petrangolini G, Peroni G. An update on magnesium and bone health. Biometals. 2021 Aug;34(4):715-736. doi: 10.1007/s10534-021-00305-0. Epub 2021 May 6. PMID: 33959846; PMCID: PMC8313472.
https://pubmed.ncbi.nlm.nih.gov/33959846/
91. Castiglioni S, Cazzaniga A, Albisetti W, Maier JA. Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrients. 2013 Jul 31;5(8):3022-33. doi: 10.3390/nu5083022. PMID: 23912329; PMCID: PMC3775240.
https://pubmed.ncbi.nlm.nih.gov/23912329/
92. He B, Xia L, Zhao J, Yin L, Zhang M, Quan Z, Ou Y, Huang W. Causal Effect of Serum Magnesium on Osteoporosis and Cardiometabolic Diseases. Front Nutr. 2021 Dec 3;8:738000. doi: 10.3389/fnut.2021.738000. PMID: 34926542; PMCID: PMC8681341.
https://pubmed.ncbi.nlm.nih.gov/34926542/
93. Rude RK, Gruber HE. Magnesium deficiency and osteoporosis: animal and human observations. J Nutr Biochem. 2004 Dec;15(12):710-6. doi: 10.1016/j.jnutbio.2004.08.001. PMID: 15607643.
https://pubmed.ncbi.nlm.nih.gov/15607643/
94. Zhang J, Tang L, Qi H, Zhao Q, Liu Y, Zhang Y. Dual Function of Magnesium in Bone Biomineralization. Adv Healthc Mater. 2019 Nov;8(21):e1901030. doi: 10.1002/adhm.201901030. Epub 2019 Oct 4. PMID: 31583846.
https://pubmed.ncbi.nlm.nih.gov/31583846/
95. Dominguez LJ, Veronese N, Ciriminna S, Pérez-Albela JL, Vásquez-López VF, Rodas-Regalado S, Di Bella G, Parisi A, Tagliaferri F, Barbagallo M. Association between Serum Magnesium and Fractures: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients. 2023 Mar 7;15(6):1304. doi: 10.3390/nu15061304. PMID: 36986033; PMCID: PMC10053795.
https://pubmed.ncbi.nlm.nih.gov/36986033/
96. He B, Xia L, Zhao J, Yin L, Zhang M, Quan Z, Ou Y, Huang W. Causal Effect of Serum Magnesium on Osteoporosis and Cardiometabolic Diseases. Front Nutr. 2021 Dec 3;8:738000. doi: 10.3389/fnut.2021.738000. PMID: 34926542; PMCID: PMC8681341.
https://pubmed.ncbi.nlm.nih.gov/34926542/
97. Costello RB, Elin RJ, Rosanoff A, Wallace TC, Guerrero-Romero F, Hruby A, Lutsey PL, Nielsen FH, Rodriguez-Moran M, Song Y, Van Horn LV. Perspective: The Case for an Evidence-Based Reference Interval for Serum Magnesium: The Time Has Come. Adv Nutr. 2016 Nov 15;7(6):977-993. doi: 10.3945/an.116.012765. PMID: 28140318; PMCID: PMC5105038.
https://pubmed.ncbi.nlm.nih.gov/28140318/
98. Groenendijk I, van Delft M, Versloot P, van Loon LJC, de Groot LCPGM. Impact of magnesium on bone health in older adults: A systematic review and meta-analysis. Bone. 2022 Jan;154:116233. doi: 10.1016/j.bone.2021.116233. Epub 2021 Oct 16. PMID: 34666201.
https://pubmed.ncbi.nlm.nih.gov/34666201/
99. Rondanelli M, Faliva MA, Tartara A, Gasparri C, Perna S, Infantino V, Riva A, Petrangolini G, Peroni G. An update on magnesium and bone health. Biometals. 2021 Aug;34(4):715-736. doi: 10.1007/s10534-021-00305-0. Epub 2021 May 6. PMID: 33959846; PMCID: PMC8313472.
https://pubmed.ncbi.nlm.nih.gov/33959846/
100. Zhang J, Tang L, Qi H, Zhao Q, Liu Y, Zhang Y. Dual Function of Magnesium in Bone Biomineralization. Adv Healthc Mater. 2019 Nov;8(21):e1901030. doi: 10.1002/adhm.201901030. Epub 2019 Oct 4. PMID: 31583846.
https://pubmed.ncbi.nlm.nih.gov/31583846/
101. Rude RK, Gruber HE. Magnesium deficiency and osteoporosis: animal and human observations. J Nutr Biochem. 2004 Dec;15(12):710-6. doi: 10.1016/j.jnutbio.2004.08.001. PMID: 15607643.
https://pubmed.ncbi.nlm.nih.gov/15607643/
Magnesium toxicity
102. Bergman, J. (2010). Is the Sodium Chloride Level in the Oceans Evidence for Abiogenesis?. Answers Res. J, 3, 159-164.
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a0de06325...
103. Grimes DA, Nanda K. Magnesium sulfate tocolysis: time to quit. Obstet Gynecol. 2006 Oct;108(4):986-9. doi: 10.1097/01.AOG.0000236445.18265.93. PMID: 17012463.
https://pubmed.ncbi.nlm.nih.gov/17012463/
104. James, M. F. M. (2010). Magnesium in obstetrics. Best Practice & Research Clinical Obstetrics & Gynaecology, 24(3), 327-337.
https://scholar.google.nl/scholar?hl=nl&as_sdt=0%2C5&q=James+Best+Pract+...
105. Houston M. The role of magnesium in hypertension and cardiovascular disease. J Clin Hypertens (Greenwich). 2011 Nov;13(11):843-7. doi: 10.1111/j.1751-7176.2011.00538.x. Epub 2011 Sep 26. PMID: 22051430; PMCID: PMC8108907.
https://pubmed.ncbi.nlm.nih.gov/22051430/
106. Ajib FA, Childress JM. Magnesium Toxicity. 2022 Nov 7. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 32119480.
https://pubmed.ncbi.nlm.nih.gov/32119480/
107. Wu, J., & Carter, A. (2007). Magnesium: the forgotten electrolyte.
https://www.nps.org.au/australian-prescriber/articles/magnesium-the-forg...
Magnesium status
108. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington (DC): National Academies Press (US); 1997. PMID: 23115811.
https://pubmed.ncbi.nlm.nih.gov/23115811/
109. Elin RJ. Assessment of magnesium status for diagnosis and therapy. Magnes Res. 2010 Dec;23(4):S194-8. doi: 10.1684/mrh.2010.0213. Epub 2010 Aug 24. PMID: 20736141.
https://pubmed.ncbi.nlm.nih.gov/20736141/
110. Nielsen FH. Guidance for the determination of status indicators and dietary requirements for magnesium. Magnes Res. 2016 Apr 1;29(4):154-160. doi: 10.1684/mrh.2016.0416. PMID: 28132953.
https://pubmed.ncbi.nlm.nih.gov/28132953/
Magnesium dietary reference intakes
108. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington (DC): National Academies Press (US); 1997. PMID: 23115811.
https://pubmed.ncbi.nlm.nih.gov/23115811/
111. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). (2015). Scientific opinion on dietary reference values for magnesium. EFSA Journal, 13(7), 4186.
https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2015.4186#
112. Kodama N, Nishimuta M, Suzuki K. Negative balance of calcium and magnesium under relatively low sodium intake in humans. J Nutr Sci Vitaminol (Tokyo). 2003 Jun;49(3):201-9. doi: 10.3177/jnsv.49.201. PMID: 12953799.
https://pubmed.ncbi.nlm.nih.gov/12953799/
113. Nishimuta M, Kodama N, Shimada M, Yoshitake Y, Matsuzaki N, Morikuni E. Estimated equilibrated dietary intakes for nine minerals (Na, K, Ca, Mg, P, Fe, Zn, Cu, and Mn) adjusted by mineral balance medians in young Japanese females. J Nutr Sci Vitaminol (Tokyo). 2012;58(2):118-28. doi: 10.3177/jnsv.58.118. Erratum in: J Nutr Sci Vitaminol (Tokyo). 2012;58(3):221. PMID: 22790570.
https://pubmed.ncbi.nlm.nih.gov/22790570/
114. Elin RJ. Assessment of magnesium status for diagnosis and therapy. Magnes Res. 2010 Dec;23(4):S194-8. doi: 10.1684/mrh.2010.0213. Epub 2010 Aug 24. PMID: 20736141.
https://pubmed.ncbi.nlm.nih.gov/20736141/
Magnesium homeostatic model
115. Green J, Kleeman CR. Role of bone in regulation of systemic acid-base balance. Kidney Int. 1991 Jan;39(1):9-26. doi: 10.1038/ki.1991.2. PMID: 1706001.
https://pubmed.ncbi.nlm.nih.gov/1706001/
116. Barzel US. The skeleton as an ion exchange system: implications for the role of acid-base imbalance in the genesis of osteoporosis. J Bone Miner Res. 1995 Oct;10(10):1431-6. doi: 10.1002/jbmr.5650101002. PMID: 8686497.
https://pubmed.ncbi.nlm.nih.gov/8686497/
117. Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A. Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta. 2000 Apr;294(1-2):1-26. doi: 10.1016/s0009-8981(99)00258-2. PMID: 10727669.
https://pubmed.ncbi.nlm.nih.gov/10727669/
118. Slills ME et al. Modern Nutrition in Health and Disease 9th Ed PDF, Chapter 9 Magnesium, 1998
https://www.scribd.com/doc/221145295/27915730-Modern-nutrition-in-Health...
119. Spencer H, Fuller H, Norris C, Williams D. Effect of magnesium on the intestinal absorption of calcium in man. J Am Coll Nutr. 1994 Oct;13(5):485-92. doi: 10.1080/07315724.1994.10718439. PMID: 7836628.
https://pubmed.ncbi.nlm.nih.gov/7836628/
120. Resnick LM. Cellular calcium and magnesium metabolism in the pathophysiology and treatment of hypertension and related metabolic disorders. Am J Med. 1992 Aug 31;93(2A):11S-20S. doi: 10.1016/0002-9343(92)90290-r. PMID: 1387762.
https://pubmed.ncbi.nlm.nih.gov/1387762/
Current and Paleolithic calcium and magnesium intakes
121. Eaton SB, Eaton SB 3rd. Paleolithic vs. modern diets--selected pathophysiological implications. Eur J Nutr. 2000 Apr;39(2):67-70. doi: 10.1007/s003940070032. PMID: 10918987.
https://pubmed.ncbi.nlm.nih.gov/10918987/
122. Cordain, L. (2002). The nutritional characteristics of a contemporary diet based upon Paleolithic food groups. J Am Neutraceutical Assoc, 5(3), 15-24
https://www.semanticscholar.org/paper/The-Nutritional-Characteristics-of...
123. RIVM, Dutch National Food Consumption Survey (DNFCS) 2012-2016: Usual intake of nutrients from foods and supplements, Gewijzigd op: 28 februari 2020
https://statline.rivm.nl/#/RIVM/nl/dataset/50074NED/table?ts=1583229955608
Evidence based medicine
124. Cohen AM, Hersh WR. Criticisms of evidence-based medicine. Evid Based Cardiovasc Med. 2004 Sep;8(3):197-8. doi: 10.1016/j.ebcm.2004.06.036. PMID: 16379931.
https://pubmed.ncbi.nlm.nih.gov/16379931/
125. Tonelli MR. Integrating evidence into clinical practice: an alternative to evidence-based approaches. J Eval Clin Pract. 2006 Jun;12(3):248-56. doi: 10.1111/j.1365-2753.2004.00551.x. PMID: 16722902.
https://pubmed.ncbi.nlm.nih.gov/16722902/
126. Martini, C. What “Evidence” in Evidence-Based Medicine?. Topoi 40, 299–305 (2021). https://doi.org/10.1007/s11245-020-09703-4
https://link.springer.com/article/10.1007/s11245-020-09703-4
127. Fernandez A, Sturmberg J, Lukersmith S, Madden R, Torkfar G, Colagiuri R, Salvador-Carulla L. Evidence-based medicine: is it a bridge too far? Health Res Policy Syst. 2015 Nov 6;13:66. doi: 10.1186/s12961-015-0057-0. PMID: 26546273; PMCID: PMC4636779.
https://pubmed.ncbi.nlm.nih.gov/26546273/
128. Tebala GD. The Emperor's New Clothes: a Critical Appraisal of Evidence-based Medicine. Int J Med Sci. 2018 Sep 7;15(12):1397-1405. doi: 10.7150/ijms.25869. PMID: 30275768; PMCID: PMC6158662.
https://pubmed.ncbi.nlm.nih.gov/30275768/
129. Sackett DL, Rosenberg WM, Gray JA, Haynes RB, Richardson WS. Evidence based medicine: what it is and what it isn't. BMJ. 1996 Jan 13;312(7023):71-2. doi: 10.1136/bmj.312.7023.71. PMID: 8555924; PMCID: PMC2349778.
https://pubmed.ncbi.nlm.nih.gov/8555924/
Evolution, land-water ecosystem
130. Cunnane, S., & Stewart, K. (Eds.). (2010). Human brain evolution: the influence of freshwater and marine food resources. John Wiley & Sons.
https://books.google.nl/books?hl=nl&lr=&id=Jjq8DwAAQBAJ&oi=fnd&pg=PR7&dq...(Eds.)+Human+Brain+Evolution:+The+Influence+of+Freshwater+and+Marine+Food+Resources,+1st+ed.%3B+Wiley-+Blackwell:+Hoboken,+NJ,+USA,+2010%3B+ISBN+978-0-470-45268-4.&ots=OSAcGdwd1e&sig=NBzXzbe0GdgdnTnsFn5CD068XQI#v=onepage&q&f=false
131. Broadhurst CL, Cunnane SC, Crawford MA. Rift Valley lake fish and shellfish provided brain-specific nutrition for early Homo. Br J Nutr. 1998 Jan;79(1):3-21. doi: 10.1079/bjn19980004. PMID: 9505798.
https://pubmed.ncbi.nlm.nih.gov/9505798/
132. Kyriacou, K.; Blackhurst, D.M.; Parkington, J.E.; Marais, A.D. Marine and terrestrial foods as a source of brain-selective nutrients for early modern humans in the southwestern Cape, South Africa. J. Hum. Evol. 2016, 97, 86–96.
https://pubmed.ncbi.nlm.nih.gov/27457547/
133. Cunnane, S. C. (2005). Survival of the fattest: the key to human brain evolution.
https://books.google.nl/books?hl=nl&lr=&id=_MFgDQAAQBAJ&oi=fnd&pg=PR7&dq...(Ed.)+.+Survival+of+the+Fattest:+The+Key+to+Human+Brain+Evolution%3B+World+Scientific+Publishing:+Singapore,+2005%3B+ISBN+981-256-191-9.&ots=wn6By89aBy&sig=Rxu5rruw2XoGtosBJOW5qF_UKNI#v=onepage&q&f=false
134. Muskiet, F. A., & Kuipers, R. S. (2010). Lessons from shore‐based hunter‐gatherer diets in East Africa. Human brain evolution: The influence of freshwater and marine food resources, 77-104.
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470609880.ch5
135. Cunnane SC, Crawford MA. Survival of the fattest: fat babies were the key to evolution of the large human brain. Comp Biochem Physiol A Mol Integr Physiol. 2003 Sep;136(1):17-26. doi: 10.1016/s1095-6433(03)00048-5. PMID: 14527626.
https://pubmed.ncbi.nlm.nih.gov/14527626/
136. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O'Keefe JH, Brand-Miller J. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr. 2005 Feb;81(2):341-54. doi: 10.1093/ajcn.81.2.341. PMID: 15699220.
https://pubmed.ncbi.nlm.nih.gov/15699220/
137. Kuipers RS, Luxwolda MF, Dijck-Brouwer DA, Eaton SB, Crawford MA, Cordain L, Muskiet FA. Estimated macronutrient and fatty acid intakes from an East African Paleolithic diet. Br J Nutr. 2010 Dec;104(11):1666-87. doi: 10.1017/S0007114510002679. Epub 2010 Sep 23. PMID: 20860883.
https://pubmed.ncbi.nlm.nih.gov/20860883/
138. Kuipers RS, Luxwolda MF, Dijck-Brouwer DA, Muskiet FA. Fatty acid compositions of preterm and term colostrum, transitional and mature milks in a sub-Saharan population with high fish intakes. Prostaglandins Leukot Essent Fatty Acids. 2012 Apr;86(4-5):201-7. doi: 10.1016/j.plefa.2012.02.006. Epub 2012 Mar 15. PMID: 22425684.
https://pubmed.ncbi.nlm.nih.gov/22425684/
139. Crawford MA, Bloom M, Cunnane S, Holmsen H, Ghebremeskel K, Parkington J, Schmidt W, Sinclair AJ, Broadhurst CL. Docosahexaenoic acid and cerebral evolution. World Rev Nutr Diet. 2001;88:6-17. doi: 10.1159/000059743. PMID: 11935972.
https://pubmed.ncbi.nlm.nih.gov/11935972/
140. Crawford MA, Bloom M, Broadhurst CL, Schmidt WF, Cunnane SC, Galli C, Gehbremeskel K, Linseisen F, Lloyd-Smith J, Parkington J. Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids. 1999;34 Suppl:S39-47. doi: 10.1007/BF02562227. PMID: 10419087.
https://pubmed.ncbi.nlm.nih.gov/10419087/
141. Broadhurst CL, Wang Y, Crawford MA, Cunnane SC, Parkington JE, Schmidt WF. Brain-specific lipids from marine, lacustrine, or terrestrial food resources: potential impact on early African Homo sapiens. Comp Biochem Physiol B Biochem Mol Biol. 2002 Apr;131(4):653-73. doi: 10.1016/s1096-4959(02)00002-7. PMID: 11923081.
https://pubmed.ncbi.nlm.nih.gov/11923081/
142. WoldeGabriel G, Ambrose SH, Barboni D, Bonnefille R, Bremond L, Currie B, DeGusta D, Hart WK, Murray AM, Renne PR, Jolly-Saad MC, Stewart KM, White TD. The geological, isotopic, botanical, invertebrate, and lower vertebrate surroundings of Ardipithecus ramidus. Science. 2009 Oct 2;326(5949):65e1-5. doi: 10.1126/science.1175817. PMID: 19810191.
https://pubmed.ncbi.nlm.nih.gov/19810191/
143. Will, M., Kandel, A. W., & Conard, N. J. (2019). Midden or molehill: The role of coastal adaptations in human evolution and dispersal. Journal of World Prehistory, 32, 33-72.
https://link.springer.com/article/10.1007/s10963-018-09127-4
144. Marean CW, Bar-Matthews M, Bernatchez J, Fisher E, Goldberg P, Herries AI, Jacobs Z, Jerardino A, Karkanas P, Minichillo T, Nilssen PJ, Thompson E, Watts I, Williams HM. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature. 2007 Oct 18;449(7164):905-8. doi: 10.1038/nature06204. PMID: 17943129.
https://pubmed.ncbi.nlm.nih.gov/17943129/
145. Smith EI, Jacobs Z, Johnsen R, Ren M, Fisher EC, Oestmo S, Wilkins J, Harris JA, Karkanas P, Fitch S, Ciravolo A, Keenan D, Cleghorn N, Lane CS, Matthews T, Marean CW. Humans thrived in South Africa through the Toba eruption about 74,000 years ago. Nature. 2018 Mar 22;555(7697):511-515. doi: 10.1038/nature25967. Epub 2018 Mar 12. PMID: 29531318.
https://pubmed.ncbi.nlm.nih.gov/29531318/
146. Marean, C. Humanity Thrived in Africa after the Eruption of a Supervolcano 74,000 Years Ago that Plunged Parts of Earth into a Decade-Long Winter.
https://www.dailymail.co.uk/sciencetech/article-5483389/How-humans-survi...
147. Stringer C. Palaeoanthropology. Coasting out of Africa. Nature. 2000 May 4;405(6782):24-5, 27. doi: 10.1038/35011166. Erratum in: Nature 2000 May 11;405(6783):138. PMID: 10811201.
https://pubmed.ncbi.nlm.nih.gov/10811201/
148. Kuipers RS, Joordens JC, Muskiet FA. A multidisciplinary reconstruction of Palaeolithic nutrition that holds promise for the prevention and treatment of diseases of civilisation. Nutr Res Rev. 2012 Jun;25(1):96-129. doi: 10.1017/S0954422412000017. PMID: 22894943.
https://pubmed.ncbi.nlm.nih.gov/22894943/
149. Talling J, Talling IB. The chemical composition of African lake waters. Internationale Revue der gesamten Hydrobiologie und Hydrographie 1965;50:421-63.
https://onlinelibrary.wiley.com/doi/abs/10.1002/iroh.19650500307
150. Biggs J, Ayele A, Fischer TP, Fontijn K, Hutchison W, Kazimoto E, Whaler K, Wright TJ. Volcanic activity and hazard in the East African Rift Zone. Nat Commun. 2021 Nov 25;12(1):6881. doi: 10.1038/s41467-021-27166-y. PMID: 34824232; PMCID: PMC8616933.
https://pubmed.ncbi.nlm.nih.gov/34824232/
151. Jungers WL. These feet were made for walking. Elife. 2016 Dec 14;5:e22886. doi: 10.7554/eLife.22886. PMID: 27964779; PMCID: PMC5156523.
https://pubmed.ncbi.nlm.nih.gov/27964779/
152. Philip, J. Y., & Mosha, D. M. S. (2012). Salt Lakes of the African rift system: A valuable research opportunity for insight into nature’s concenrtated multi-electrolyte science. Tanzania Journal of Science, 38(3), 1-13.
https://www.ajol.info/index.php/tjs/article/view/100175
153. Jager, T. J. (1982). Soils of the Serengeti woodlands, Tanzania. Wageningen University and Research.
https://scholar.google.nl/scholar?hl=nl&as_sdt=0%2C5&q=Soils+of+the+Sere...
154. Weinstein, P., Horwell, C. J., & Cook, A. (2013). Volcanic emissions and health. Essentials of medical geology: revised edition, 217-238.
https://link.springer.com/chapter/10.1007/978-94-007-4375-5_10
155. Volcano Watch — Volcanic selenium and sulfur - a delicate balance By Hawaiian Volcano Observatory July 27, 2007
https://www.usgs.gov/observatories/hvo/news/volcano-watch-volcanic-selen...
156. Yuretich, R. F. (1979). Modern sediments and sedimentary processes in Lake Rudolf (Lake Turkana) eastern rift valley, Kenya. Sedimentology, 26(3), 313-331.
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3091.1979.tb00912.x
157. Getenet M, García-Ruiz JM, Otálora F, Emmerling F, Al-Sabbagh D, Verdugo-Escamilla C. A Comprehensive Methodology for Monitoring Evaporitic Mineral Precipitation and Hydrochemical Evolution of Saline Lakes: The Case of Lake Magadi Soda Brine (East African Rift Valley, Kenya). Cryst Growth Des. 2022 Apr 6;22(4):2307-2317. doi: 10.1021/acs.cgd.1c01391. Epub 2022 Mar 3. PMID: 35401055; PMCID: PMC8991015.
https://pubmed.ncbi.nlm.nih.gov/35401055/
158. Yuretich, R. F., & Cerling, T. E. (1983). Hydrogeochemistry of Lake Turkana, Kenya: mass balance and mineral reactions in an alkaline lake. Geochimica et Cosmochimica Acta, 47(6), 1099-1109.
https://www.sciencedirect.com/science/article/abs/pii/0016703783902405
Food surveys
159. Carriquiry AL. Assessing the prevalence of nutrient inadequacy. Public Health Nutr. 1999 Mar;2(1):23-33. doi: 10.1017/s1368980099000038. PMID: 10452728.
https://pubmed.ncbi.nlm.nih.gov/10452728/
160. Dinnissen, C. S., de Jong, M. H., Verkaik-Kloosterman, J., & Hendriksen, M. (2022). Jodiuminname van volwassenen in Noord Nederland in 2020-2021 en trend sinds 2006-2007. Resultaten van voedingsstatusonderzoek in het Lifelines cohort.
https://www.rivm.nl/publicaties/jodiuminname-van-volwassenen-in-noord-ne...
161. Institute of Medicine (US) Subcommittee on Interpretation and Uses of Dietary Reference Intakes; Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. DRI Dietary Reference Intakes: Applications in Dietary Assessment. Washington (DC): National Academies Press (US); 2000
https://pubmed.ncbi.nlm.nih.gov/25057725/
162. Trumbo PR, Barr SI, Murphy SP, Yates AA. Dietary reference intakes: cases of appropriate and inappropriate uses. Nutr Rev. 2013 Oct;71(10):657-64. doi: 10.1111/nure.12067. Epub 2013 Oct 3. PMID: 24117790.
https://pubmed.ncbi.nlm.nih.gov/24117790/
163. van Rossum, C. T., Fransen, H. P., Verkaik-Kloosterman, J., Buurma-Rethans, E. J., & Ocké, M. C. (2011). Dutch National Food Consumption Survey 2007-2010: Diet of children and adults aged 7 to 69 years.
https://rivm.openrepository.com/handle/10029/261553
164. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington (DC): National Academies Press (US); 1997. PMID: 23115811.
https://pubmed.ncbi.nlm.nih.gov/23115811/
165. Van Rossum, C. T. M., Buurma-Rethans, E. J. M., Dinnissen, C. S., Beukers, M. H., Brants, H. A. M., & Ocké, M. C. (2020). The diet of the Dutch: Results of the Dutch national food consumption survey 2012-2016.
https://rivm.openrepository.com/handle/10029/624455
166. DNFCS2012-2016: Usual intake of macro- and micronutrients from foods only, Gewijzigd op: 28 februari 2020. Voedselconsumptiepeiling 2012-2016 (VCP 2012-2016), Rijksinstituut voor Volksgezondheid en Milieu (RIVM), Bilthoven, Statline
https://statline.rivm.nl/#/RIVM/nl/dataset/50073NED/table?ts=1583229881203
166a. Voedingscentrum. Eerlijk over eten. Magnesium. Accessed 19 May 2023.
https://www.voedingscentrum.nl/encyclopedie/magnesium.aspxBijlagenI
Calcium/magnesium ratio
167. Liu H, Li N, Jin M, Miao X, Zhang X, Zhong W. Magnesium supplementation enhances insulin sensitivity and decreases insulin resistance in diabetic rats. Iran J Basic Med Sci. 2020 Aug;23(8):990-998. doi: 10.22038/ijbms.2020.40859.9650. PMID: 32952944; PMCID: PMC7478262.
https://pubmed.ncbi.nlm.nih.gov/32952944/
168. King DE, Mainous AG 3rd, Geesey ME, Woolson RF. Dietary magnesium and C-reactive protein levels. J Am Coll Nutr. 2005 Jun;24(3):166-71. doi: 10.1080/07315724.2005.10719461. PMID: 15930481.
https://pubmed.ncbi.nlm.nih.gov/15930481/
169. Guerrero-Romero F, Rodríguez-Morán M. Hypomagnesemia, oxidative stress, inflammation, and metabolic syndrome. Diabetes Metab Res Rev. 2006 Nov-Dec;22(6):471-6. doi: 10.1002/dmrr.644. PMID: 16598698.
https://pubmed.ncbi.nlm.nih.gov/16598698/
170. Cavicchia PP, Steck SE, Hurley TG, Hussey JR, Ma Y, Ockene IS, Hébert JR. A new dietary inflammatory index predicts interval changes in serum high-sensitivity C-reactive protein. J Nutr. 2009 Dec;139(12):2365-72. doi: 10.3945/jn.109.114025. Epub 2009 Oct 28. PMID: 19864399; PMCID: PMC2777480.
https://pubmed.ncbi.nlm.nih.gov/19864399/
171. Nielsen FH. Effects of magnesium depletion on inflammation in chronic disease. Curr Opin Clin Nutr Metab Care. 2014 Nov;17(6):525-30. doi: 10.1097/MCO.0000000000000093. PMID: 25023192.
https://pubmed.ncbi.nlm.nih.gov/25023192/
172. Dai Q, Shu XO, Deng X, Xiang YB, Li H, Yang G, Shrubsole MJ, Ji B, Cai H, Chow WH, Gao YT, Zheng W. Modifying effect of calcium/magnesium intake ratio and mortality: a population-based cohort study. BMJ Open. 2013 Feb 20;3(2):e002111. doi: 10.1136/bmjopen-2012-002111. Erratum in: BMJ Open. 2013 May 31;3(5):null. PMID: 23430595; PMCID: PMC3585973.
https://pubmed.ncbi.nlm.nih.gov/23430595/
173. Yang C, Jing W, Ge S, Sun W. Vitamin D status and vitamin D deficiency risk factors among pregnancy of Shanghai in China. BMC Pregnancy Childbirth. 2021 Jun 18;21(1):431. doi: 10.1186/s12884-021-03889-0. PMID: 34144704; PMCID: PMC8214247.
https://pubmed.ncbi.nlm.nih.gov/34144704/
174. Steingrimsdottir L, Gunnarsson O, Indridason OS, Franzson L, Sigurdsson G. Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake. JAMA. 2005 Nov 9;294(18):2336-41. doi: 10.1001/jama.294.18.2336. PMID: 16278362.
https://pubmed.ncbi.nlm.nih.gov/16278362/
175. Heaney RP. Vitamin D and calcium interactions: functional outcomes. Am J Clin Nutr. 2008 Aug;88(2):541S-544S. doi: 10.1093/ajcn/88.2.541S. PMID: 18689398.
https://pubmed.ncbi.nlm.nih.gov/18689398/
176. Bischoff-Ferrari, H., & Willett, W. (2011). Comment on the IOM vitamin D and calcium recommendations: For adult bone health, too low on vitamin D—and too generous on calcium. The Nutrition Source: Harvard University.
https://www.hsph.harvard.edu/nutritionsource/2010/12/25/comment-on-the-i...
177. Zhao J, Giri A, Zhu X, Shrubsole MJ, Jiang Y, Guo X, Ness R, Seidner DL, Giovannucci E, Edwards TL, Dai Q. Calcium: magnesium intake ratio and colorectal carcinogenesis, results from the prostate, lung, colorectal, and ovarian cancer screening trial. Br J Cancer. 2019 Oct;121(9):796-804. doi: 10.1038/s41416-019-0579-2. Epub 2019 Sep 23. PMID: 31543516; PMCID: PMC6889387.
https://pubmed.ncbi.nlm.nih.gov/31543516/
178. Afonso R, Marques RC, Borges H, Cabrita A, Silva AP. The Usefulness of Calcium/Magnesium Ratio in the Risk Stratification of Early Onset of Renal Replacement Therapy. Diagnostics (Basel). 2022 Oct 12;12(10):2470. doi: 10.3390/diagnostics12102470. PMID: 36292159; PMCID: PMC9600033.
https://pubmed.ncbi.nlm.nih.gov/36292159/
179. Gong TT, Wei YF, Li XY, Liu FH, Wen ZY, Yan S, Qin X, Gao S, Li XQ, Zhao YH, Wu QJ. Pre-diagnostic dietary consumption of calcium and magnesium and calcium-to-magnesium intake ratio and ovarian cancer mortality: results from the ovarian cancer follow-up study (OOPS). Eur J Nutr. 2022 Oct;61(7):3487-3497. doi: 10.1007/s00394-022-02883-2. Epub 2022 May 21. PMID: 35596007.
https://pubmed.ncbi.nlm.nih.gov/35596007/
180. Kisters K, Wessels F, Küper H, Tokmak F, Krefting ER, Gremmler B, Kosch M, Barenbrock M, Hausberg M. Increased calcium and decreased magnesium concentrations and an increased calcium/magnesium ratio in spontaneously hypertensive rats versus Wistar-Kyoto rats: relation to arteriosclerosis. Am J Hypertens. 2004 Jan;17(1):59-62. doi: 10.1016/j.amjhyper.2003.08.012. PMID: 14700514.
https://pubmed.ncbi.nlm.nih.gov/14700514/
181. Zhang A, Cheng TP, Altura BM. Magnesium regulates intracellular free ionized calcium concentration and cell geometry in vascular smooth muscle cells. Biochim Biophys Acta. 1992 Feb 19;1134(1):25-9. doi: 10.1016/0167-4889(92)90024-6. PMID: 1543756.
https://pubmed.ncbi.nlm.nih.gov/1543756/
182. Trevor Connor. The Importance of the Calcium-to-Magnesium Ratio, November 21, 2020. Accessed 15 May 2023
https://thepaleodiet.com/the-importance-of-the-calcium-to-magnesium-ratio
183. Barbagallo M, Gupta RK, Dominguez LJ, Resnick LM. Cellular ionic alterations with age: relation to hypertension and diabetes. J Am Geriatr Soc. 2000 Sep;48(9):1111-6. doi: 10.1111/j.1532-5415.2000.tb04788.x. PMID: 10983912.
https://pubmed.ncbi.nlm.nih.gov/10983912/
184. Albrecht Fleckenstein, M.D. Calcium antagonism in Heart and smooth Muscle Experimental Facts and Therapeutic Prospects, ISBN 10: 0471054356 / ISBN 13: 9780471054351, Published by John Wiley & Sons, N.Y., 1983
https://www.abebooks.com/Calcium-antagonism-Heart-smooth-Muscle-Experime...
185. Murphy E, Eisner DA. Regulation of intracellular and mitochondrial sodium in health and disease. Circ Res. 2009 Feb 13;104(3):292-303. doi: 10.1161/CIRCRESAHA.108.189050. PMID: 19213964; PMCID: PMC2662399.
https://pubmed.ncbi.nlm.nih.gov/19213964/
186. Verkhratsky A, Trebak M, Perocchi F, Khananshvili D, Sekler I. Crosslink between calcium and sodium signalling. Exp Physiol. 2018 Feb 1;103(2):157-169. doi: 10.1113/EP086534. Epub 2018 Jan 16. PMID: 29210126; PMCID: PMC6813793.
https://pubmed.ncbi.nlm.nih.gov/29210126/
187. Aksentijević D, Karlstaedt A, Basalay MV, O'Brien BA, Sanchez-Tatay D, Eminaga S, Thakker A, Tennant DA, Fuller W, Eykyn TR, Taegtmeyer H, Shattock MJ. Intracellular sodium elevation reprograms cardiac metabolism. Nat Commun. 2020 Aug 28;11(1):4337. doi: 10.1038/s41467-020-18160-x. PMID: 32859897; PMCID: PMC7455741.
https://pubmed.ncbi.nlm.nih.gov/32859897/
188. Karppanen H, Mervaala E. Sodium intake and hypertension. Prog Cardiovasc Dis. 2006 Sep-Oct;49(2):59-75. doi: 10.1016/j.pcad.2006.07.001. PMID: 17046432.
https://pubmed.ncbi.nlm.nih.gov/17046432/
188a. Adrogué HJ, Madias NE. Sodium surfeit and potassium deficit: keys to the pathogenesis of hypertension. J Am Soc Hypertens. 2014 Mar;8(3):203-13. doi: 10.1016/j.jash.2013.09.003. Epub 2013 Nov 5. PMID: 24200471.
https://pubmed.ncbi.nlm.nih.gov/24200471/
189. Pickering RT, Bradlee ML, Singer MR, Moore LL. Higher Intakes of Potassium and Magnesium, but Not Lower Sodium, Reduce Cardiovascular Risk in the Framingham Offspring Study. Nutrients. 2021 Jan 19;13(1):269. doi: 10.3390/nu13010269. PMID: 33477824; PMCID: PMC7832857.
https://pubmed.ncbi.nlm.nih.gov/33477824/
190. Rafaqat, S., Rafaqat, S., Khurshid, H., & Rafaqat, S. (2022). Electrolyte’s imbalance role in atrial fibrillation: Pharmacological management. International Journal of Arrhythmia, 23(1), 1-10.
https://arrhythmia.biomedcentral.com/articles/10.1186/s42444-022-00065-z
190a. Chaudhary R, Garg J, Turagam M, Chaudhary R, Gupta R, Nazir T, Bozorgnia B, Albert C, Lakkireddy D. Role of Prophylactic Magnesium Supplementation in Prevention of Postoperative Atrial Fibrillation in Patients Undergoing Coronary Artery Bypass Grafting: a Systematic Review and Meta-Analysis of 20 Randomized Controlled Trials. J Atr Fibrillation. 2019 Jun 30;12(1):2154. doi: 10.4022/jafib.2154. PMID: 31687067; PMCID: PMC6811340.
https://pubmed.ncbi.nlm.nih.gov/31687067/
191. Mente A, Irvine EJ, Honey RJ, Logan AG. Urinary potassium is a clinically useful test to detect a poor quality diet. J Nutr. 2009 Apr;139(4):743-9. doi: 10.3945/jn.108.098319. Epub 2009 Feb 11. PMID: 19211830.
https://pubmed.ncbi.nlm.nih.gov/19211830/
192. Fan MS, Zhao FJ, Fairweather-Tait SJ, Poulton PR, Dunham SJ, McGrath SP. Evidence of decreasing mineral density in wheat grain over the last 160 years. J Trace Elem Med Biol. 2008;22(4):315-24. doi: 10.1016/j.jtemb.2008.07.002. Epub 2008 Sep 17. PMID: 19013359.
https://pubmed.ncbi.nlm.nih.gov/19013359/
192a. Stacey Colino. Fruits and vegetables are less nutritious than they used to be. National Geographic 3 may 2022
https://www.nationalgeographic.co.uk/environment-and-conservation/2022/0...
192b. Darmon N, Darmon M, Maillot M, Drewnowski A. A nutrient density standard for vegetables and fruits: nutrients per calorie and nutrients per unit cost. J Am Diet Assoc. 2005 Dec;105(12):1881-7. doi: 10.1016/j.jada.2005.09.005. PMID: 16321593.
https://pubmed.ncbi.nlm.nih.gov/16321593/
193. Koebnick C, Leitzmann R, García AL, Heins UA, Heuer T, Golf S, Katz N, Hoffmann I, Leitzmann C. Long-term effect of a plant-based diet on magnesium status during pregnancy. Eur J Clin Nutr. 2005 Feb;59(2):219-25. doi: 10.1038/sj.ejcn.1602062. PMID: 15454974.
https://pubmed.ncbi.nlm.nih.gov/15454974/
194. Ströhle A, Waldmann A, Koschizke J, Leitzmann C, Hahn A. Diet-dependent net endogenous acid load of vegan diets in relation to food groups and bone health-related nutrients: results from the German Vegan Study. Ann Nutr Metab. 2011;59(2-4):117-26. doi: 10.1159/000331572. Epub 2011 Dec 2. PMID: 22142775.
https://pubmed.ncbi.nlm.nih.gov/22142775/
195. Thomas D. The mineral depletion of foods available to us as a nation (1940-2002)--a review of the 6th Edition of McCance and Widdowson. Nutr Health. 2007;19(1-2):21-55. doi: 10.1177/026010600701900205. PMID: 18309763.
https://pubmed.ncbi.nlm.nih.gov/18309763/
196. Workinger JL, Doyle RP, Bortz J. Challenges in the Diagnosis of Magnesium Status. Nutrients. 2018 Sep 1;10(9):1202. doi: 10.3390/nu10091202. PMID: 30200431; PMCID: PMC6163803.
https://pubmed.ncbi.nlm.nih.gov/30200431/
197. Davis DR, Epp MD, Riordan HD. Changes in USDA food composition data for 43 garden crops, 1950 to 1999. J Am Coll Nutr. 2004 Dec;23(6):669-82. doi: 10.1080/07315724.2004.10719409. PMID: 15637215.
https://pubmed.ncbi.nlm.nih.gov/15637215/
198. Manuelian CL, Penasa M, Visentin G, Zidi A, Cassandro M, De Marchi M. Mineral composition of cow milk from multibreed herds. Anim Sci J. 2018 Nov;89(11):1622-1627. doi: 10.1111/asj.13095. Epub 2018 Sep 16. PMID: 30221430.
https://pubmed.ncbi.nlm.nih.gov/15699220/
199. Dror DK, Allen LH. Overview of Nutrients in Human Milk. Adv Nutr. 2018 May 1;9(suppl_1):278S-294S. doi: 10.1093/advances/nmy022. PMID: 29846526; PMCID: PMC6008960.
https://pubmed.ncbi.nlm.nih.gov/29846526/
200. Muskiet, F. A. J. (2005). Evolutionaire geneeskunde U bent wat u eet, maar u moet weer worden wat u at. Ned Tijdschr Klin Chem Labgeneesk, 30(3), 163-184.
https://www.natuurdietisten.nl/files/PDF%20publicatie%20Muskiet%20dec%20...(2).pdf
201. Magnesium in the Diet: The Bad News about Magnesium Food Sources. Accessed 15 May 2023
https://www.ancient-minerals.com/transdermal-magnesium/dietary/
202. Sengupta P. Potential health impacts of hard water. Int J Prev Med. 2013 Aug;4(8):866-75. PMID: 24049611; PMCID: PMC3775162.
https://pubmed.ncbi.nlm.nih.gov/24049611/
203. Galan P, Arnaud MJ, Czernichow S, Delabroise AM, Preziosi P, Bertrais S, Franchisseur C, Maurel M, Favier A, Hercberg S. Contribution of mineral waters to dietary calcium and magnesium intake in a French adult population. J Am Diet Assoc. 2002 Nov;102(11):1658-62. doi: 10.1016/s0002-8223(02)90353-6. PMID: 12449291.
https://pubmed.ncbi.nlm.nih.gov/12449291/
204. Azoulay A, Garzon P, Eisenberg MJ. Comparison of the mineral content of tap water and bottled waters. J Gen Intern Med. 2001 Mar;16(3):168-75. doi: 10.1111/j.1525-1497.2001.04189.x. PMID: 11318912; PMCID: PMC1495189.
https://pubmed.ncbi.nlm.nih.gov/11318912/
205. Davies BE. The UK geochemical environment and cardiovascular diseases: magnesium in food and water. Environ Geochem Health. 2015 Jun;37(3):411-27. doi: 10.1007/s10653-014-9671-y. Epub 2014 Dec 21. PMID: 25528218.
https://pubmed.ncbi.nlm.nih.gov/25528218/
206. Rylander R. Drinking water constituents and disease. J Nutr. 2008 Feb;138(2):423S-425S. doi: 10.1093/jn/138.2.423S. PMID: 18203915.
https://pubmed.ncbi.nlm.nih.gov/18203915/
Calcium for strong bones
207. Shin CS, Kim KM. The risks and benefits of calcium supplementation. Endocrinol Metab (Seoul). 2015 Mar 27;30(1):27-34. doi: 10.3803/EnM.2015.30.1.27. PMID: 25827454; PMCID: PMC4384676.
https://pubmed.ncbi.nlm.nih.gov/25827454/
208. Balk EM, Adam GP, Langberg VN, Earley A, Clark P, Ebeling PR, Mithal A, Rizzoli R, Zerbini CAF, Pierroz DD, Dawson-Hughes B; International Osteoporosis Foundation Calcium Steering Committee. Global dietary calcium intake among adults: a systematic review. Osteoporos Int. 2017 Dec;28(12):3315-3324. doi: 10.1007/s00198-017-4230-x. Epub 2017 Oct 12. Erratum in: Osteoporos Int. 2018 Feb 26;: PMID: 29026938; PMCID: PMC5684325.
https://pubmed.ncbi.nlm.nih.gov/29026938/
209. International Osteoporosis Foundation, accessed 16 May 2023
https://www.osteoporosis.foundation/health-professionals/fragility-fract...
210. Kanis JA, Odén A, McCloskey EV, Johansson H, Wahl DA, Cooper C; IOF Working Group on Epidemiology and Quality of Life. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int. 2012 Sep;23(9):2239-56. doi: 10.1007/s00198-012-1964-3. Epub 2012 Mar 15. PMID: 22419370; PMCID: PMC3421108.
https://pubmed.ncbi.nlm.nih.gov/22419370/
211. Hilliard CB. High osteoporosis risk among East Africans linked to lactase persistence genotype. Bonekey Rep. 2016 Jun 29;5:803. doi: 10.1038/bonekey.2016.30. PMID: 27408710; PMCID: PMC4926535.
https://pubmed.ncbi.nlm.nih.gov/27408710/
212. Milking Your Bones, by Linda Palmer January 1, 2002, accessed 16 May 2023
http://babyreference.com/milking-your-bones/
213. Hegsted DM. Fractures, calcium, and the modern diet. Am J Clin Nutr. 2001 Nov;74(5):571-3. doi: 10.1093/ajcn/74.5.571. PMID: 11684522.
https://pubmed.ncbi.nlm.nih.gov/11684522/
214. Hegsted DM. Calcium and osteoporosis. J Nutr. 1986 Nov;116(11):2316-9. doi: 10.1093/jn/116.11.2316. PMID: 3794834.
https://pubmed.ncbi.nlm.nih.gov/3794834/
215. Frassetto L, Morris RC Jr, Sellmeyer DE, Todd K, Sebastian A. Diet, evolution and aging--the pathophysiologic effects of the post-agricultural inversion of the potassium-to-sodium and base-to-chloride ratios in the human diet. Eur J Nutr. 2001 Oct;40(5):200-13. doi: 10.1007/s394-001-8347-4. PMID: 11842945.
https://pubmed.ncbi.nlm.nih.gov/11842945/
216. Chapuy MC, Arlot ME, Delmas PD, Meunier PJ. Effect of calcium and cholecalciferol treatment for three years on hip fractures in elderly women. BMJ. 1994 Apr 23;308(6936):1081-2. doi: 10.1136/bmj.308.6936.1081. PMID: 8173430; PMCID: PMC2539939.
https://pubmed.ncbi.nlm.nih.gov/8173430/
217. Reid IR. Should we prescribe calcium supplements for osteoporosis prevention? J Bone Metab. 2014 Feb;21(1):21-8. doi: 10.11005/jbm.2014.21.1.21. Epub 2014 Feb 28. PMID: 24707464; PMCID: PMC3970298.
https://pubmed.ncbi.nlm.nih.gov/24707464/
217a. Li K, Wang XF, Li DY, Chen YC, Zhao LJ, Liu XG, Guo YF, Shen J, Lin X, Deng J, Zhou R, Deng HW. The good, the bad, and the ugly of calcium supplementation: a review of calcium intake on human health. Clin Interv Aging. 2018 Nov 28;13:2443-2452. doi: 10.2147/CIA.S157523. PMID: 30568435; PMCID: PMC6276611.
https://pubmed.ncbi.nlm.nih.gov/30568435/
218. Bristow SM, Bolland MJ, Gamble GD, Leung W, Reid IR. Dietary calcium intake and change in bone mineral density in older adults: a systematic review of longitudinal cohort studies. Eur J Clin Nutr. 2022 Feb;76(2):196-205. doi: 10.1038/s41430-021-00957-8. Epub 2021 Jun 15. PMID: 34131304.
https://pubmed.ncbi.nlm.nih.gov/34131304/
Toxicity of high calcium
219. RIVM, Zuivel, accessed 18 May 2023
https://www.wateetnederland.nl/resultaten/richtlijnen/zuivel
219a. Kiesswetter E, Stadelmaier J, Petropoulou M, Morze J, Grummich K, Roux I, Lay R, Himmelsbach L, Kussmann M, Roeger C, Rubach M, Hauner H, Schwingshackl L. Effects of Dairy Intake on Markers of Cardiometabolic Health in Adults: A Systematic Review with Network Meta-Analysis. Adv Nutr. 2023 May;14(3):438-450. doi: 10.1016/j.advnut.2023.03.004. Epub 2023 Mar 11. PMID: 36914032.
https://pubmed.ncbi.nlm.nih.gov/36914032/
219b. Giosuè A, Calabrese I, Vitale M, Riccardi G, Vaccaro O. Consumption of Dairy Foods and Cardiovascular Disease: A Systematic Review. Nutrients. 2022 Feb 16;14(4):831. doi: 10.3390/nu14040831. PMID: 35215479; PMCID: PMC8875110.
https://pubmed.ncbi.nlm.nih.gov/35215479/
219c. Jakobsen MU, Trolle E, Outzen M, Mejborn H, Grønberg MG, Lyndgaard CB, Stockmarr A, Venø SK, Bysted A. Intake of dairy products and associations with major atherosclerotic cardiovascular diseases: a systematic review and meta-analysis of cohort studies. Sci Rep. 2021 Jan 14;11(1):1303. doi: 10.1038/s41598-020-79708-x. PMID: 33446728; PMCID: PMC7809206.
https://pubmed.ncbi.nlm.nih.gov/33446728/
219d. Guo J, Astrup A, Lovegrove JA, Gijsbers L, Givens DI, Soedamah-Muthu SS. Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Eur J Epidemiol. 2017 Apr;32(4):269-287. doi: 10.1007/s10654-017-0243-1. Epub 2017 Apr 3. PMID: 28374228; PMCID: PMC5437143.
https://pubmed.ncbi.nlm.nih.gov/28374228/
220. de Jong N, Ocké MC, Branderhorst HA, Friele R. Demographic and lifestyle characteristics of functional food consumers and dietary supplement users. Br J Nutr. 2003 Feb;89(2):273-81. doi: 10.1079/BJN2002772. PMID: 12575912.
https://pubmed.ncbi.nlm.nih.gov/12575912/
221. RIVM, Statline, DNFCS2012-2016; Mean contribution of food sources to the intake of nutrients
Gewijzigd op: 28 februari 2020, accessed 18 May 2023
https://statline.rivm.nl/#/RIVM/nl/dataset/50072NED/table?ts=1583230038838
221a. Ocke, M. C., Buurma-Rethans, E. J. M., & Fransen, H. P. (2005). Dietary supplement use in the Netherlands: current data and recommendations for future assessment. RIVM rapport 350100001.
https://rivm.openrepository.com/handle/10029/261790
222. Osteoporose Vereniging. Voeding en supplementen. Accessed 18 May 2023
https://osteoporosevereniging.nl/behandeling/voeding-en-supplementen/?gc...
223. NHG Richtlijn Osteoporose en fractuurpreventie. Initiërende partij(en): CBO, NVR, Laatste aanpassing: januari 2011, accessed 18 May 2023
https://richtlijnen.nhg.org/multidisciplinaire-richtlijnen/osteoporose-e...
224. Heaney RP, Kopecky S, Maki KC, Hathcock J, Mackay D, Wallace TC. A review of calcium supplements and cardiovascular disease risk. Adv Nutr. 2012 Nov 1;3(6):763-71. doi: 10.3945/an.112.002899. PMID: 23153730; PMCID: PMC3648700.
https://pubmed.ncbi.nlm.nih.gov/23153730/
225. Bolland MJ, Barber PA, Doughty RN, Mason B, Horne A, Ames R, Gamble GD, Grey A, Reid IR. Vascular events in healthy older women receiving calcium supplementation: randomised controlled trial. BMJ. 2008 Feb 2;336(7638):262-6. doi: 10.1136/bmj.39440.525752.BE. Epub 2008 Jan 15. PMID: 18198394; PMCID: PMC2222999.
https://pubmed.ncbi.nlm.nih.gov/18198394/
226. Reid IR, Bolland MJ. Calcium supplements: bad for the heart? Heart. 2012 Jun;98(12):895-6. doi: 10.1136/heartjnl-2012-301904. PMID: 22626897.
https://pubmed.ncbi.nlm.nih.gov/22626897/
227. Bolland MJ, Avenell A, Baron JA, Grey A, MacLennan GS, Gamble GD, Reid IR. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ. 2010 Jul 29;341:c3691. doi: 10.1136/bmj.c3691. PMID: 20671013; PMCID: PMC2912459.
https://pubmed.ncbi.nlm.nih.gov/20671013/
228. Myung SK, Kim HB, Lee YJ, Choi YJ, Oh SW. Calcium Supplements and Risk of Cardiovascular Disease: A Meta-Analysis of Clinical Trials. Nutrients. 2021 Jan 26;13(2):368. doi: 10.3390/nu13020368. PMID: 33530332; PMCID: PMC7910980.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910980/
228a. Reid, I. R., & Bristow, S. M. (2019). Calcium and Bone. In Bone Regulators and Osteoporosis Therapy (pp. 259-280). Cham: Springer International Publishing.
https://link.springer.com/chapter/10.1007/164_2019_324
229. Kassis N, Hariri EH, Karrthik AK, Ahuja KR, Layoun H, Saad AM, Gad MM, Kaur M, Bazarbashi N, Griffin BP, Popovic ZB, Harb SC, Desai MY, Kapadia SR. Supplemental calcium and vitamin D and long-term mortality in aortic stenosis. Heart. 2022 May 25;108(12):964-972. doi: 10.1136/heartjnl-2021-320215. PMID: 35470234.
https://pubmed.ncbi.nlm.nih.gov/35470234/
Mechanism of calcium toxicity
230. Vieth R. Vitamin D and cancer mini-symposium: the risk of additional vitamin D. Ann Epidemiol. 2009 Jul;19(7):441-5. doi: 10.1016/j.annepidem.2009.01.009. Epub 2009 Apr 11. PMID: 19364661.
https://pubmed.ncbi.nlm.nih.gov/19364661/
231. Vieth R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr. 1999 May;69(5):842-56. doi: 10.1093/ajcn/69.5.842. PMID: 10232622.
https://pubmed.ncbi.nlm.nih.gov/10232622/
232. Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol. 2005 Jul;289(1):F8-28. doi: 10.1152/ajprenal.00336.2004. PMID: 15951480.
https://pubmed.ncbi.nlm.nih.gov/15951480/
232a. Beall DP, Henslee HB, Webb HR, Scofield RH. Milk-alkali syndrome: a historical review and description of the modern version of the syndrome. Am J Med Sci. 2006 May;331(5):233-42. doi: 10.1097/00000441-200605000-00001. PMID: 16702792.
https://pubmed.ncbi.nlm.nih.gov/16702792/
233. Fleet JC. Vitamin D-Mediated Regulation of Intestinal Calcium Absorption. Nutrients. 2022 Aug 16;14(16):3351. doi: 10.3390/nu14163351. PMID: 36014856; PMCID: PMC9416674.
https://pubmed.ncbi.nlm.nih.gov/36014856/
233a. Ali R, Hashmi MF, Patel C. Milk-Alkali Syndrome. 2023 Feb 19. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 32491432.
https://pubmed.ncbi.nlm.nih.gov/32491432/
234. Fine KD, Santa Ana CA, Porter JL, Fordtran JS. Intestinal absorption of magnesium from food and supplements. J Clin Invest. 1991 Aug;88(2):396-402. doi: 10.1172/JCI115317. PMID: 1864954; PMCID: PMC295344.
https://pubmed.ncbi.nlm.nih.gov/1864954/
234a. Abrams SA, Grusak MA, Stuff J, O'Brien KO. Calcium and magnesium balance in 9-14-y-old children. Am J Clin Nutr. 1997 Nov;66(5):1172-7. doi: 10.1093/ajcn/66.5.1172. PMID: 9356535.
https://pubmed.ncbi.nlm.nih.gov/9356535/
235. Karp HJ, Ketola ME, Lamberg-Allardt CJ. Acute effects of calcium carbonate, calcium citrate and potassium citrate on markers of calcium and bone metabolism in young women. Br J Nutr. 2009 Nov;102(9):1341-7. doi: 10.1017/S0007114509990195. Epub 2009 Jun 19. PMID: 19538811.
https://pubmed.ncbi.nlm.nih.gov/19538811/
236. Reid IR, Bristow SM, Bolland MJ. Cardiovascular complications of calcium supplements. J Cell Biochem. 2015 Apr;116(4):494-501. doi: 10.1002/jcb.25028. PMID: 25491763.
https://pubmed.ncbi.nlm.nih.gov/25491763/
237. Reid IR, Bolland MJ. Does widespread calcium supplementation pose cardiovascular risk? Yes: the potential risk is a concern. Am Fam Physician. 2013 Feb 1;87(3):Online. PMID: 23418770.
https://pubmed.ncbi.nlm.nih.gov/23418770/
238. Bristow SM, Gamble GD, Stewart A, Horne L, House ME, Aati O, Mihov B, Horne AM, Reid IR. Acute and 3-month effects of microcrystalline hydroxyapatite, calcium citrate and calcium carbonate on serum calcium and markers of bone turnover: a randomised controlled trial in postmenopausal women. Br J Nutr. 2014 Nov 28;112(10):1611-20. doi: 10.1017/S0007114514002785. Epub 2014 Oct 2. PMID: 25274192.
https://pubmed.ncbi.nlm.nih.gov/25274192/
239. Handy CE, Desai CS, Dardari ZA, Al-Mallah MH, Miedema MD, Ouyang P, Budoff MJ, Blumenthal RS, Nasir K, Blaha MJ. The Association of Coronary Artery Calcium With Noncardiovascular Disease: The Multi-Ethnic Study of Atherosclerosis. JACC Cardiovasc Imaging. 2016 May;9(5):568-576. doi: 10.1016/j.jcmg.2015.09.020. Epub 2016 Mar 9. PMID: 26970999; PMCID: PMC4860157.
https://pubmed.ncbi.nlm.nih.gov/26970999/
240. Cannata-Andía JB, Carrillo-López N, Messina OD, Hamdy NAT, Panizo S, Ferrari SL, On Behalf Of The International Osteoporosis Foundation Iof Working Group On Bone And Cardiovascular Diseases. Pathophysiology of Vascular Calcification and Bone Loss: Linked Disorders of Ageing? Nutrients. 2021 Oct 27;13(11):3835. doi: 10.3390/nu13113835. PMID: 34836090; PMCID: PMC8623966.
https://pubmed.ncbi.nlm.nih.gov/34836090/
241. Sage AP, Tintut Y, Demer LL. Regulatory mechanisms in vascular calcification. Nat Rev Cardiol. 2010 Sep;7(9):528-36. doi: 10.1038/nrcardio.2010.115. Epub 2010 Jul 27. PMID: 20664518; PMCID: PMC3014092.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014092/
242. Lee SJ, Lee IK, Jeon JH. Vascular Calcification-New Insights Into Its Mechanism. Int J Mol Sci. 2020 Apr 13;21(8):2685. doi: 10.3390/ijms21082685. PMID: 32294899; PMCID: PMC7216228.
https://pubmed.ncbi.nlm.nih.gov/32294899/
243. Hruby A, O'Donnell CJ, Jacques PF, Meigs JB, Hoffmann U, McKeown NM. Magnesium intake is inversely associated with coronary artery calcification: the Framingham Heart Study. JACC Cardiovasc Imaging. 2014 Jan;7(1):59-69. doi: 10.1016/j.jcmg.2013.10.006. Epub 2013 Nov 27. PMID: 24290571; PMCID: PMC3957229.
https://pubmed.ncbi.nlm.nih.gov/24290571/
244. Ter Braake AD, Shanahan CM, de Baaij JHF. Magnesium Counteracts Vascular Calcification: Passive Interference or Active Modulation? Arterioscler Thromb Vasc Biol. 2017 Aug;37(8):1431-1445. doi: 10.1161/ATVBAHA.117.309182. Epub 2017 Jun 29. PMID: 28663256.
https://pubmed.ncbi.nlm.nih.gov/28663256/
245. DiNicolantonio JJ, McCarty MF, O'Keefe JH. Decreased magnesium status may mediate the increased cardiovascular risk associated with calcium supplementation. Open Heart. 2017 May 22;4(1):e000617. doi: 10.1136/openhrt-2017-000617. PMID: 29225900; PMCID: PMC5708314.
https://pubmed.ncbi.nlm.nih.gov/29225900/
246. Rennenberg RJ, de Leeuw PW, Kessels AG, Schurgers LJ, Vermeer C, van Engelshoven JM, Kemerink GJ, Kroon AA. Calcium scores and matrix Gla protein levels: association with vitamin K status. Eur J Clin Invest. 2010 Apr;40(4):344-9. doi: 10.1111/j.1365-2362.2010.02275.x. PMID: 20486996.
https://pubmed.ncbi.nlm.nih.gov/20486996/
247. Cranenburg EC, Vermeer C, Koos R, Boumans ML, Hackeng TM, Bouwman FG, Kwaijtaal M, Brandenburg VM, Ketteler M, Schurgers LJ. The circulating inactive form of matrix Gla Protein (ucMGP) as a biomarker for cardiovascular calcification. J Vasc Res. 2008;45(5):427-36. doi: 10.1159/000124863. Epub 2008 Apr 10. PMID: 18401181.
https://pubmed.ncbi.nlm.nih.gov/18401181/
248. Lin YL, Hsu BG. Vitamin K and vascular calcification in chronic kidney disease: An update of current evidence. Tzu Chi Med J. 2022 Jul 26;35(1):44-50. doi: 10.4103/tcmj.tcmj_100_22. PMID: 36866348; PMCID: PMC9972925.
https://pubmed.ncbi.nlm.nih.gov/36866348/
249. Flore R, Ponziani FR, Di Rienzo TA, Zocco MA, Flex A, Gerardino L, Lupascu A, Santoro L, Santoliquido A, Di Stasio E, Chierici E, Lanti A, Tondi P, Gasbarrini A. Something more to say about calcium homeostasis: the role of vitamin K2 in vascular calcification and osteoporosis. Eur Rev Med Pharmacol Sci. 2013 Sep;17(18):2433-40. PMID: 24089220.
https://pubmed.ncbi.nlm.nih.gov/24089220/
Homo sapiens as omnivore
250. Ben-Dor M, Sirtoli R, Barkai R. The evolution of the human trophic level during the Pleistocene. Am J Phys Anthropol. 2021 Aug;175 Suppl 72:27-56. doi: 10.1002/ajpa.24247. Epub 2021 Mar 5. PMID: 33675083.