In dit tweede deel rond thermoregulatie verneemt u meer over de 'fysiologie van kou'. Met die kennis kan een antwoord worden geformuleerd op de vraag in hoeverre koudeprikkels gezond zijn. Bruin vetweefsel is een onderwerp dat hierbij niet mag ontbreken en ook de 'Iceman' gaan we niet uit de weg. In de discussie voegen we de kouderespons toe aan andere stressprikkels.
Beste bezoeker, u heeft geen toegang.
Enkel (web)abonnees hebben toegang tot tijdschriftartikelen. Het webabonnement is nog in de maak.
U kunt zich wel alvast (gratis) registreren en tal van andere webartikelen raadplegen!
Auteur
Trefwoorden:
Verschenen in
Referenties
1. Protsiv M, Ley C, Lankester J, Hastie T, Parsonnet J. Decreasing human body temperature in the United States since the industrial revolution. Elife. 2020 Jan 7;9:e49555. doi: 10.7554/eLife.49555. PMID: 31908267; PMCID: PMC6946399.
https://pubmed.ncbi.nlm.nih.gov/31908267/
2. Marhall M. Humans are cooling down so average body temperature is no longer 37°C. New Scientist 10 January 2022, accessed 24-10-2022
https://www.newscientist.com/article/2229715-humans-are-cooling-down-so-...
3. Wikipedia. Human body temperature. Accessed 24-10-2022
https://en.wikipedia.org/wiki/Human_body_temperature#cite_note-SundLevan...
4. Sund-Levander M, Forsberg C, Wahren LK. Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review. Scand J Caring Sci. 2002 Jun;16(2):122-8. doi: 10.1046/j.1471-6712.2002.00069.x. PMID: 12000664.
https://pubmed.ncbi.nlm.nih.gov/12000664/
5. Halton TL, Hu FB. The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr. 2004 Oct;23(5):373-85. doi: 10.1080/07315724.2004.10719381. PMID: 15466943.
https://pubmed.ncbi.nlm.nih.gov/15466943/
6. Westerterp KR. Diet induced thermogenesis. Nutr Metab (Lond). 2004 Aug 18;1(1):5. doi: 10.1186/1743-7075-1-5. PMID: 15507147; PMCID: PMC524030.
https://pubmed.ncbi.nlm.nih.gov/15507147/
6a. Veldhorst M, Smeets A, Soenen S, Hochstenbach-Waelen A, Hursel R, Diepvens K, Lejeune M, Luscombe-Marsh N, Westerterp-Plantenga M. Protein-induced satiety: effects and mechanisms of different proteins. Physiol Behav. 2008 May 23;94(2):300-7. doi: 10.1016/j.physbeh.2008.01.003. Epub 2008 Jan 12. PMID: 18282589.
https://pubmed.ncbi.nlm.nih.gov/18282589/
7. Aita S,Matsushita, M, Yoneshiro T, Hatano T. Kameya T, Ohkubo I, Saito M. Brown adipose tissue–associated postprandial thermogenesis in humans: Different effects of isocaloric meals rich in carbohydrate, fat, and protein. Research Square, posted 30 Jun, 2022, accessed 24-10-2022
https://www.researchsquare.com/article/rs-1762974/v1
8. Yakkala C, Denys A, Kandalaft L, Duran R. Cryoablation and immunotherapy of cancer. Curr Opin Biotechnol. 2020 Oct;65:60-64. doi: 10.1016/j.copbio.2020.01.006. Epub 2020 Feb 20. PMID: 32088576.
https://pubmed.ncbi.nlm.nih.gov/32088576/
9. Tveita T, Sieck GC. Physiological Impact of Hypothermia: The Good, the Bad, and the Ugly. Physiology (Bethesda). 2022 Mar 1;37(2):69-87. doi: 10.1152/physiol.00025.2021. Epub 2021 Oct 11. PMID: 34632808.
https://pubmed.ncbi.nlm.nih.gov/34632808/
10. Duong H, Patel G. Hypothermia. 2022 Jan 24. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–. PMID: 31424823.
https://pubmed.ncbi.nlm.nih.gov/31424823/
11. Swenson C, Swärd L, Karlsson J. Cryotherapy in sports medicine. Scand J Med Sci Sports. 1996 Aug;6(4):193-200. doi: 10.1111/j.1600-0838.1996.tb00090.x. PMID: 8896090.
https://pubmed.ncbi.nlm.nih.gov/8896090/
12. Prohaska J, Jan AH. Cryotherapy. 2022 Jul 25. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–. PMID: 29493944.
https://pubmed.ncbi.nlm.nih.gov/29493944/
13. Kok HP, Cressman ENK, Ceelen W, Brace CL, Ivkov R, Grüll H, Ter Haar G, Wust P, Crezee J. Heating technology for malignant tumors: a review. Int J Hyperthermia. 2020;37(1):711-741. doi: 10.1080/02656736.2020.1779357. PMID: 32579419; PMCID: PMC7781160.
https://pubmed.ncbi.nlm.nih.gov/32579419/
14. Current Trends Hypothermia -- United States. Morbidity and Mortality Weekly Report (MMWR), Center for Disease Control and Prevention (CDC), January 28, 1983 / 32(3);46-8, accessed 24-10-2022
https://www.cdc.gov/mmwr/preview/mmwrhtml/00001231.htm
15. Hyperthermia. Cleveland Clinic; accessed 24-10-2022
https://my.clevelandclinic.org/health/diseases/22111-hyperthermia
16. van Marken Lichtenbelt WD, Pallubinsky H, Te Kulve M. Modulation of thermogenesis and metabolic health: a built environment perspective. Obes Rev. 2018 Dec;19 Suppl 1:94-101. doi: 10.1111/obr.12789. PMID: 30511507.
https://pubmed.ncbi.nlm.nih.gov/30511507/
17. Himms-Hagen J. Role of thermogenesis in the regulation of energy balance in relation to obesity. Can J Physiol Pharmacol. 1989 Apr;67(4):394-401. doi: 10.1139/y89-063. PMID: 2667732.
https://pubmed.ncbi.nlm.nih.gov/2667732/
18. Daanen HA, Van Marken Lichtenbelt WD. Human whole body cold adaptation. Temperature (Austin). 2016 Feb 22;3(1):104-18. doi: 10.1080/23328940.2015.1135688. PMID: 27227100; PMCID: PMC4861193.
https://pubmed.ncbi.nlm.nih.gov/27227100/
19. Bae JS, Lee JB, Matsumoto T, Othman T, Min YK, Yang HM. Prolonged residence of temperate natives in the tropics produces a suppression of sweating. Pflugers Arch. 2006 Oct;453(1):67-72. doi: 10.1007/s00424-006-0098-x. Epub 2006 May 31. PMID: 16736205.
https://pubmed.ncbi.nlm.nih.gov/16736205/
19a. Wheeler PE. The evolution of bipedality and loss of functional body hair in hominids. Journal of Human Evolution Volume 13, Issue 1, January 1984, Pages 91-98. https://doi.org/10.1016/S0047-2484(84)80079-2
https://www.sciencedirect.com/science/article/abs/pii/S0047248484800792
19b. Ruxton GD, Wilkinson DM. Avoidance of overheating and selection for both hair loss and bipedality in hominins. Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):20965-9. doi: 10.1073/pnas.1113915108. Epub 2011 Dec 12. PMID: 22160694; PMCID: PMC3248486.
https://pubmed.ncbi.nlm.nih.gov/22160694/
19c. Dror Y, Hopp M. Hair for brain trade-off, a metabolic bypass for encephalization. Springerplus. 2014 Sep 27;3:562. doi: 10.1186/2193-1801-3-562. PMID: 25332862; PMCID: PMC4190188.
https://pubmed.ncbi.nlm.nih.gov/25332862/
19d. Kamberov YG, Karlsson EK, Kamberova GL, Lieberman DE, Sabeti PC, Morgan BA, Tabin CJ. A genetic basis of variation in eccrine sweat gland and hair follicle density. Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):9932-7. doi: 10.1073/pnas.1511680112. Epub 2015 Jul 20. PMID: 26195765; PMCID: PMC4538659.
https://pubmed.ncbi.nlm.nih.gov/26195765/
19e. Dávid-Barrett T, Dunbar RI. Bipedality and hair loss in human evolution revisited: The impact of altitude and activity scheduling. J Hum Evol. 2016 May;94:72-82. doi: 10.1016/j.jhevol.2016.02.006. Epub 2016 Mar 22. PMID: 27178459; PMCID: PMC4874949.
https://pubmed.ncbi.nlm.nih.gov/27178459/
19f. Kamberov YG, Guhan SM, DeMarchis A, Jiang J, Wright SS, Morgan BA, Sabeti PC, Tabin CJ, Lieberman DE. Comparative evidence for the independent evolution of hair and sweat gland traits in primates. J Hum Evol. 2018 Dec;125:99-105. doi: 10.1016/j.jhevol.2018.10.008. Epub 2018 Nov 7. PMID: 30502901; PMCID: PMC6289065.
https://pubmed.ncbi.nlm.nih.gov/30502901/
19g. Castellani JW, Young AJ. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure. Auton Neurosci. 2016 Apr;196:63-74. doi: 10.1016/j.autneu.2016.02.009. Epub 2016 Feb 21. PMID: 26924539.
https://pubmed.ncbi.nlm.nih.gov/26924539/
20. Iwen KA, Oelkrug R, Brabant G. Effects of thyroid hormones on thermogenesis and energy partitioning. J Mol Endocrinol. 2018 Apr;60(3):R157-R170. doi: 10.1530/JME-17-0319. Epub 2018 Feb 6. PMID: 29434028.
https://pubmed.ncbi.nlm.nih.gov/29434028/
21. Tan CL, Knight ZA. Regulation of Body Temperature by the Nervous System. Neuron. 2018 Apr 4;98(1):31-48. doi: 10.1016/j.neuron.2018.02.022. PMID: 29621489; PMCID: PMC6034117.
https://pubmed.ncbi.nlm.nih.gov/29621489/
22. Levy SB, Leonard WR. The evolutionary significance of human brown adipose tissue: Integrating the timescales of adaptation. Evol Anthropol. 2022 Apr;31(2):75-91. doi: 10.1002/evan.21930. Epub 2021 Dec 15. PMID: 34910348.
https://pubmed.ncbi.nlm.nih.gov/34910348/
23. Brychta RJ, Chen KY. Cold-induced thermogenesis in humans. Eur J Clin Nutr. 2017 Mar;71(3):345-352. doi: 10.1038/ejcn.2016.223. Epub 2016 Nov 23. PMID: 27876809; PMCID: PMC6449850.
https://pubmed.ncbi.nlm.nih.gov/27876809/
24. Thermal neutral zone. Wikipedia, accessed 24-10-2022
https://en.wikipedia.org/wiki/Thermal_neutral_zone
25. Lichtenbelt Wv, Kingma B, van der Lans A, Schellen L. Cold exposure--an approach to increasing energy expenditure in humans. Trends Endocrinol Metab. 2014 Apr;25(4):165-7. doi: 10.1016/j.tem.2014.01.001. Epub 2014 Jan 22. PMID: 24462079.
https://pubmed.ncbi.nlm.nih.gov/24462079/
26. What is the Human Comfort Zone for Temperature and Humidity? WellCare blog, accessed 24-10-2022
https://blog.wellcare-global.com/blog/what-is-the-human-comfort-zone-for...
27. Knobel Robin B., Fetal and Neonatal Thermal Physiology, Newborn and Infant Nursing Reviews (2014), doi: 10.1053/j.nainr.2014.03.003
https://www.sciencedirect.com/science/article/abs/pii/S1527336914000233
28. Zhao Z, Yang R, Li M, Bao M, Huo D, Cao J, Speakman JR. Effects of ambient temperatures between 5 and 35 °C on energy balance, body mass and body composition in mice. Mol Metab. 2022 Oct;64:101551. doi: 10.1016/j.molmet.2022.101551. Epub 2022 Jul 20. PMID: 35870706; PMCID: PMC9382332.
https://pubmed.ncbi.nlm.nih.gov/35870706/
28a. Ward DM, Cloonan SM. Mitochondrial Iron in Human Health and Disease. Annu Rev Physiol. 2019 Feb 10;81:453-482. doi: 10.1146/annurev-physiol-020518-114742. Epub 2018 Nov 28. PMID: 30485761; PMCID: PMC6641538.
https://pubmed.ncbi.nlm.nih.gov/30485761/
29. van Marken Lichtenbelt WD. Human Brown Adipose Tissue-A Decade Later. Obesity (Silver Spring). 2021 Jul;29(7):1099-1101. doi: 10.1002/oby.23166. Epub 2021 May 17. PMID: 34002540; PMCID: PMC8360096.
https://pubmed.ncbi.nlm.nih.gov/34002540/
30. Yoneshiro T, Aita S, Matsushita M, Kameya T, Nakada K, Kawai Y, Saito M. Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity (Silver Spring). 2011 Jan;19(1):13-6. doi: 10.1038/oby.2010.105. Epub 2010 May 6. PMID: 20448535.
https://pubmed.ncbi.nlm.nih.gov/20448535/
31. Yoneshiro T, Matsushita M, Nakae S, Kameya T, Sugie H, Tanaka S, Saito M. Brown adipose tissue is involved in the seasonal variation of cold-induced thermogenesis in humans. Am J Physiol Regul Integr Comp Physiol. 2016 May;310(10):R999-R1009. doi: 10.1152/ajpregu.00057.2015. Epub 2016 Mar 30. PMID: 27030666.
https://pubmed.ncbi.nlm.nih.gov/27030666/
32. Yoneshiro T, Aita S, Matsushita M, Okamatsu-Ogura Y, Kameya T, Kawai Y, Miyagawa M, Tsujisaki M, Saito M. Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity (Silver Spring). 2011 Sep;19(9):1755-60. doi: 10.1038/oby.2011.125. Epub 2011 May 12. PMID: 21566561.
https://pubmed.ncbi.nlm.nih.gov/21566561/
32a. Blondin DP, Haman F. Shivering and nonshivering thermogenesis in skeletal muscles. Handb Clin Neurol. 2018;156:153-173. doi: 10.1016/B978-0-444-63912-7.00010-2. PMID: 30454588.
https://pubmed.ncbi.nlm.nih.gov/30454588/
33. Vosselman MJ, Vijgen GH, Kingma BR, Brans B, van Marken Lichtenbelt WD. Frequent extreme cold exposure and brown fat and cold-induced thermogenesis: a study in a monozygotic twin. PLoS One. 2014 Jul 11;9(7):e101653. doi: 10.1371/journal.pone.0101653. PMID: 25014028; PMCID: PMC4094425.
https://pubmed.ncbi.nlm.nih.gov/25014028/
34a. Horowitz M. Epigenetics and cytoprotection with heat acclimation. J Appl Physiol (1985). 2016 Mar 15;120(6):702-10. doi: 10.1152/japplphysiol.00552.2015. Epub 2015 Oct 15. PMID: 26472869.
https://pubmed.ncbi.nlm.nih.gov/26472869/
34b. Abe Y, Fujiwara Y, Takahashi H, Matsumura Y, Sawada T, Jiang S, Nakaki R, Uchida A, Nagao N, Naito M, Kajimura S, Kimura H, Osborne TF, Aburatani H, Kodama T, Inagaki T, Sakai J. Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic phospho-switch. Nat Commun. 2018 Apr 19;9(1):1566. doi: 10.1038/s41467-018-03868-8. PMID: 29674659; PMCID: PMC5908789.
https://pubmed.ncbi.nlm.nih.gov/29674659/
34c. Xu R, Li S, Guo S, Zhao Q, Abramson MJ, Li S, Guo Y. Environmental temperature and human epigenetic modifications: A systematic review. Environ Pollut. 2020 Apr;259:113840. doi: 10.1016/j.envpol.2019.113840. Epub 2019 Dec 19. PMID: 31884209.
https://pubmed.ncbi.nlm.nih.gov/31884209/
34d. Nanduri R. Epigenetic Regulators of White Adipocyte Browning. Epigenomes. 2021 Jan 12;5(1):3. doi: 10.3390/epigenomes5010003. PMID: 34968255; PMCID: PMC8594687.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594687/
34e. Murray KO, Clanton TL, Horowitz M. Epigenetic responses to heat: From adaptation to maladaptation. Exp Physiol. 2022 Oct;107(10):1144-1158. doi: 10.1113/EP090143. Epub 2022 May 5. PMID: 35413138; PMCID: PMC9529784.
https://pubmed.ncbi.nlm.nih.gov/35413138/
35. Gluckman PD, Hanson MA, Spencer HG. Predictive adaptive responses and human evolution. Trends Ecol Evol. 2005 Oct;20(10):527-33. doi: 10.1016/j.tree.2005.08.001. Epub 2005 Aug 11. PMID: 16701430.
https://pubmed.ncbi.nlm.nih.gov/16701430/
36. Gluckman PD, Hanson MA, Morton SM, Pinal CS. Life-long echoes--a critical analysis of the developmental origins of adult disease model. Biol Neonate. 2005;87(2):127-39. doi: 10.1159/000082311. Epub 2004 Nov 24. PMID: 15564779.
https://pubmed.ncbi.nlm.nih.gov/15564779/
37. Hanson MA, Gluckman PD. Developmental origins of health and disease--global public health implications. Best Pract Res Clin Obstet Gynaecol. 2015 Jan;29(1):24-31. doi: 10.1016/j.bpobgyn.2014.06.007. Epub 2014 Aug 19. PMID: 25225058.
https://pubmed.ncbi.nlm.nih.gov/25225058/
38. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O'Keefe JH, Brand-Miller J. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr. 2005 Feb;81(2):341-54. doi: 10.1093/ajcn.81.2.341. PMID: 15699220.
https://pubmed.ncbi.nlm.nih.gov/15699220/
39. Gluckman PD, Hanson MA. Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr Res. 2004 Sep;56(3):311-7. doi: 10.1203/01.PDR.0000135998.08025.FB. Epub 2004 Jul 7. PMID: 15240866.
https://pubmed.ncbi.nlm.nih.gov/15240866/
40. ADAMS T, COVINO BG. Racial variations to a standardized cold stress. J Appl Physiol. 1958 Jan;12(1):9-12. doi: 10.1152/jappl.1958.12.1.9. PMID: 13502249.
https://pubmed.ncbi.nlm.nih.gov/13502249/
41. Brown JH. Why are there so many species in the tropics? J Biogeogr. 2014 Jan;41(1):8-22. doi: 10.1111/jbi.12228. PMID: 25684838; PMCID: PMC4320694.
https://pubmed.ncbi.nlm.nih.gov/25684838/
42. Hancock AM, Witonsky DB, Alkorta-Aranburu G, Beall CM, Gebremedhin A, Sukernik R, Utermann G, Pritchard JK, Coop G, Di Rienzo A. Adaptations to climate-mediated selective pressures in humans. PLoS Genet. 2011 Apr;7(4):e1001375. doi: 10.1371/journal.pgen.1001375. Epub 2011 Apr 21. PMID: 21533023; PMCID: PMC3080864.
https://pubmed.ncbi.nlm.nih.gov/21533023/
43. Fumagalli M, Sironi M, Pozzoli U, Ferrer-Admetlla A, Pattini L, Nielsen R. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet. 2011 Nov;7(11):e1002355. doi: 10.1371/journal.pgen.1002355. Epub 2011 Nov 3. Erratum in: PLoS Genet. 2011 Nov;7(11). doi:10.1371/annotation/ca428083-dbcb-476a-956c-d7bb6e317cf7. Ferrer-Admettla, Anna [corrected to Ferrer-Admetlla, Anna]. PMID: 22072984; PMCID: PMC3207877.
https://pubmed.ncbi.nlm.nih.gov/22072984/
43a. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006 Dec 14;444(7121):860-7. doi: 10.1038/nature05485. PMID: 17167474.
https://pubmed.ncbi.nlm.nih.gov/17167474/
43b. Hotamisligil GS, Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol. 2008 Dec;8(12):923-34. doi: 10.1038/nri2449. PMID: 19029988; PMCID: PMC2814543.
https://pubmed.ncbi.nlm.nih.gov/19029988/
43c. Calay ES, Hotamisligil GS. Turning off the inflammatory, but not the metabolic, flames. Nat Med. 2013 Mar;19(3):265-7. doi: 10.1038/nm.3114. PMID: 23467233.
https://pubmed.ncbi.nlm.nih.gov/23467233/
43d. Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017 Feb 8;542(7640):177-185. doi: 10.1038/nature21363. PMID: 28179656.
https://pubmed.ncbi.nlm.nih.gov/28179656/
43e. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988 Dec;37(12):1595-607. doi: 10.2337/diab.37.12.1595. PMID: 3056758.
https://pubmed.ncbi.nlm.nih.gov/3056758/
43f. Reaven GM. The metabolic syndrome: requiescat in pace. Clin Chem. 2005 Jun;51(6):931-8. doi: 10.1373/clinchem.2005.048611. Epub 2005 Mar 3. PMID: 15746300.
https://pubmed.ncbi.nlm.nih.gov/15746300/
43g. Reaven GM. The insulin resistance syndrome: definition and dietary approaches to treatment. Annu Rev Nutr. 2005;25:391-406. doi: 10.1146/annurev.nutr.24.012003.132155. PMID: 16011472.
https://pubmed.ncbi.nlm.nih.gov/16011472/
44. Ivanova YM, Blondin DP. Examining the benefits of cold exposure as a therapeutic strategy for obesity and type 2 diabetes. J Appl Physiol (1985). 2021 May 1;130(5):1448-1459. doi: 10.1152/japplphysiol.00934.2020. Epub 2021 Mar 25. PMID: 33764169.
https://pubmed.ncbi.nlm.nih.gov/33764169/
45. Remie CME, Moonen MPB, Roumans KHM, Nascimento EBM, Gemmink A, Havekes B, Schaart G, Kornips E, Joris PJ, Schrauwen-Hinderling VB, Hoeks J, Kersten S, Hesselink MKC, Phielix E, Lichtenbelt WDVM, Schrauwen P. Metabolic responses to mild cold acclimation in type 2 diabetes patients. Nat Commun. 2021 Mar 9;12(1):1516. doi: 10.1038/s41467-021-21813-0. PMID: 33750795; PMCID: PMC7943816.
https://pubmed.ncbi.nlm.nih.gov/33750795/
46. Elf SE, Chen J. Targeting glucose metabolism in patients with cancer. Cancer. 2014 Mar 15;120(6):774-80. doi: 10.1002/cncr.28501. Epub 2013 Dec 2. PMID: 24374503; PMCID: PMC4507501.
https://pubmed.ncbi.nlm.nih.gov/24374503/
47. Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci. 2016 Jan;73(2):377-92. doi: 10.1007/s00018-015-2070-4. Epub 2015 Oct 23. PMID: 26499846.
https://pubmed.ncbi.nlm.nih.gov/26499846/
48. Yuneva M. Cold exposure as anti-cancer therapy. Cancer Cell. 2022 Oct 10;40(10):1092-1094. doi: 10.1016/j.ccell.2022.09.008. PMID: 36220071.
https://pubmed.ncbi.nlm.nih.gov/36220071/
49. Yoneshiro T, Rodríguez-Rodríguez R, Betz MJ, Rensen PCN. Editorial: Current Challenges for Targeting Brown Fat Thermogenesis to Combat Obesity. Front Endocrinol (Lausanne). 2020 Oct 27;11:600341. doi: 10.3389/fendo.2020.600341. PMID: 33193112; PMCID: PMC7653195.
https://pubmed.ncbi.nlm.nih.gov/33193112/
50. Buijze GA, Sierevelt IN, van der Heijden BC, Dijkgraaf MG, Frings-Dresen MH. The Effect of Cold Showering on Health and Work: A Randomized Controlled Trial. PLoS One. 2016 Sep 15;11(9):e0161749. doi: 10.1371/journal.pone.0161749. Erratum in: PLoS One. 2018 Aug 2;13(8):e0201978. PMID: 27631616; PMCID: PMC5025014.
https://pubmed.ncbi.nlm.nih.gov/27631616/
51. Wim Hof. Wikipedia, accessed 24-10-2022
https://nl.wikipedia.org/wiki/Wim_Hof
52. Kox M, van Eijk LT, Zwaag J, van den Wildenberg J, Sweep FC, van der Hoeven JG, Pickkers P. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans. Proc Natl Acad Sci U S A. 2014 May 20;111(20):7379-84. doi: 10.1073/pnas.1322174111. Epub 2014 May 5. PMID: 24799686; PMCID: PMC4034215.
https://pubmed.ncbi.nlm.nih.gov/24799686/
53. Zwaag J, Naaktgeboren R, van Herwaarden AE, Pickkers P, Kox M. The Effects of Cold Exposure Training and a Breathing Exercise on the Inflammatory Response in Humans: A Pilot Study. Psychosom Med. 2022 May 1;84(4):457-467. doi: 10.1097/PSY.0000000000001065. Epub 2022 Feb 23. PMID: 35213875; PMCID: PMC9071023.
https://pubmed.ncbi.nlm.nih.gov/35213875/
54. Muzik O, Reilly KT, Diwadkar VA. "Brain over body"-A study on the willful regulation of autonomic function during cold exposure. Neuroimage. 2018 May 15;172:632-641. doi: 10.1016/j.neuroimage.2018.01.067. Epub 2018 Feb 10. PMID: 29438845.
https://pubmed.ncbi.nlm.nih.gov/29438845/
55. Petraskova Touskova T, Bob P, Bares Z, Vanickova Z, Nyvlt D, Raboch J. A novel Wim Hof psychophysiological training program to reduce stress responses during an Antarctic expedition. J Int Med Res. 2022 Apr;50(4):3000605221089883. doi: 10.1177/03000605221089883. PMID: 35437052; PMCID: PMC9021496.
https://pubmed.ncbi.nlm.nih.gov/35437052/
56. Iceman weerstaat kou door ademhalingstechniek'. EenVandaag 15-07-2014 Redactie Dirk-Jan Zomm accessed 24-10-2022
https://eenvandaag.avrotros.nl/item/iceman-weerstaat-kou-door-ademhaling....
57. 'Oefeningen iceman Wim Hof eisen slachtoffers'. Roelf Jan Duin, Het Parool, 28 mei 2016, accessed 24-10-2022
https://www.parool.nl/nieuws/oefeningen-iceman-wim-hof-eisen-slachtoffer...
58. 'Iceman'-oefening eist opnieuw leven. Roelf Jan Duin, Het Parool, 2 juli 2016, accessed 24-10-2022
https://www.parool.nl/nieuws/iceman-oefening-eist-opnieuw-leven~bd0a4600....
59. Wim Hof Method. Warning - important message, please read carefully. Accessed 24-10-2022
https://web.archive.org/web/20161129181133/
http://www.wimhofmethod.com/pages/practice-the-method
59a. Straub RH, Cutolo M, Buttgereit F, Pongratz G. Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J Intern Med. 2010 Jun;267(6):543-60. doi: 10.1111/j.1365-2796.2010.02218.x. Epub 2010 Jan 28. PMID: 20210843.
https://pubmed.ncbi.nlm.nih.gov/20210843/
59b. Reynisdottir S, Wahrenberg H, Carlström K, Rössner S, Arner P. Catecholamine resistance in fat cells of women with upper-body obesity due to decreased expression of beta 2-adrenoceptors. Diabetologia. 1994 Apr;37(4):428-35. doi: 10.1007/BF00408482. PMID: 8063046.
https://pubmed.ncbi.nlm.nih.gov/8063046/
59c. Larabee CM, Neely OC, Domingos AI. Obesity: a neuroimmunometabolic perspective. Nat Rev Endocrinol. 2020 Jan;16(1):30-43. doi: 10.1038/s41574-019-0283-6. Epub 2019 Nov 27. PMID: 31776456.
https://pubmed.ncbi.nlm.nih.gov/31776456/
59d. Valentine JM, Ahmadian M, Keinan O, Abu-Odeh M, Zhao P, Zhou X, Keller MP, Gao H, Yu RT, Liddle C, Downes M, Zhang J, Lusis AJ, Attie AD, Evans RM, Rydén M, Saltiel AR. β3-Adrenergic receptor downregulation leads to adipocyte catecholamine resistance in obesity. J Clin Invest. 2022 Jan 18;132(2):e153357. doi: 10.1172/JCI153357. PMID: 34847077; PMCID: PMC8759781.
https://pubmed.ncbi.nlm.nih.gov/34847077/
59e. Oka T. Stress-induced hyperthermia and hypothermia. Handb Clin Neurol. 2018;157:599-621. doi: 10.1016/B978-0-444-64074-1.00035-5. PMID: 30459027.
https://pubmed.ncbi.nlm.nih.gov/30459027/
60. Dhabhar FS, McEwen BS. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav Immun. 1997 Dec;11(4):286-306. doi: 10.1006/brbi.1997.0508. PMID: 9512816.
https://pubmed.ncbi.nlm.nih.gov/9512816/
61. Dhabhar FS. Psychological stress and immunoprotection versus immunopathology in the skin. Clin Dermatol. 2013 Jan-Feb;31(1):18-30. doi: 10.1016/j.clindermatol.2011.11.003. PMID: 23245970.
https://pubmed.ncbi.nlm.nih.gov/23245970/
62. Dhabhar FS. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res. 2014 May;58(2-3):193-210. doi: 10.1007/s12026-014-8517-0. PMID: 24798553.
https://pubmed.ncbi.nlm.nih.gov/24798553/
63. Dhabhar FS. The power of positive stress - a complementary commentary. Stress. 2019 Sep;22(5):526-529. doi: 10.1080/10253890.2019.1634049. Epub 2019 Jul 24. PMID: 31339410.
https://pubmed.ncbi.nlm.nih.gov/31339410/
64. Tian R, Hou G, Li D, Yuan TF. A possible change process of inflammatory cytokines in the prolonged chronic stress and its ultimate implications for health. ScientificWorldJournal. 2014;2014:780616. doi: 10.1155/2014/780616. Epub 2014 Jun 3. PMID: 24995360; PMCID: PMC4065693.
https://pubmed.ncbi.nlm.nih.gov/24995360/
65. Rohleder N. Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosom Med. 2014 Apr;76(3):181-9. doi: 10.1097/PSY.0000000000000049. PMID: 24608036.
https://pubmed.ncbi.nlm.nih.gov/24608036/
66. Strahler J, Skoluda N, Rohleder N, Nater UM. Dysregulated stress signal sensitivity and inflammatory disinhibition as a pathophysiological mechanism of stress-related chronic fatigue. Neurosci Biobehav Rev. 2016 Sep;68:298-318. doi: 10.1016/j.neubiorev.2016.05.008. Epub 2016 May 18. PMID: 27208412.
https://pubmed.ncbi.nlm.nih.gov/27208412/
67. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006 Jan;27(1):24-31. doi: 10.1016/j.it.2005.11.006. Epub 2005 Nov 28. PMID: 16316783; PMCID: PMC3392963.
https://pubmed.ncbi.nlm.nih.gov/16316783/
68. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009 May 1;65(9):732-41. doi: 10.1016/j.biopsych.2008.11.029. Epub 2009 Jan 15. PMID: 19150053; PMCID: PMC2680424.
https://pubmed.ncbi.nlm.nih.gov/19150053/
69. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016 Jan;16(1):22-34. doi: 10.1038/nri.2015.5. PMID: 26711676; PMCID: PMC5542678.
https://pubmed.ncbi.nlm.nih.gov/26711676/
70. Janssen CW, Lowry CA, Mehl MR, Allen JJ, Kelly KL, Gartner DE, Medrano A, Begay TK, Rentscher K, White JJ, Fridman A, Roberts LJ, Robbins ML, Hanusch KU, Cole SP, Raison CL. Whole-Body Hyperthermia for the Treatment of Major Depressive Disorder: A Randomized Clinical Trial. JAMA Psychiatry. 2016 Aug 1;73(8):789-95. doi: 10.1001/jamapsychiatry.2016.1031. Erratum in: JAMA Psychiatry. 2016 Aug 1;73(8):878. PMID: 27172277.
https://pubmed.ncbi.nlm.nih.gov/27172277/
71. Pruimboom L, Ruiz-Núñez B, Raison CL, Muskiet FA. Influence of a 10-Day Mimic of Our Ancient Lifestyle on Anthropometrics and Parameters of Metabolism and Inflammation: The "Study of Origin". Biomed Res Int. 2016;2016:6935123. doi: 10.1155/2016/6935123. Epub 2016 Jun 6. Erratum in: Biomed Res Int. 2017;2017:1641589. PMID: 27366752; PMCID: PMC4913061.
https://pubmed.ncbi.nlm.nih.gov/27366752/
72. Palmer BF, Clegg DJ. Metabolic Flexibility and Its Impact on Health Outcomes. Mayo Clin Proc. 2022 Apr;97(4):761-776. doi: 10.1016/j.mayocp.2022.01.012. Epub 2022 Mar 11. PMID: 35287953.
https://pubmed.ncbi.nlm.nih.gov/35287953/
73. Pruimboom L, Muskiet FAJ. Intermittent living; the use of ancient challenges as a vaccine against the deleterious effects of modern life - A hypothesis. Med Hypotheses. 2018 Nov;120:28-42. doi: 10.1016/j.mehy.2018.08.002. Epub 2018 Aug 9. PMID: 30220336.